ﻻ يوجد ملخص باللغة العربية
We calculate O(alpha_s) two-loop virtual corrections to the differential decay width dGamma(B --> X_s l^+ l^-)/ds, where s is the invariant mass squared of the lepton pair. We also include those contributions from gluon bremsstrahlung which are needed to cancel infrared and collinear singularities present in the virtual corrections. Our calculation is restricted to the range 0.05 < s/m_b^2 < 0.25 where the effects from resonances are small. The new contributions drastically reduce the renormalization scale dependence of existing results for dGamma(B --> X_s l^+ l^-)/ds. For the corresponding branching ratio (restricted to the above s-range) the renormalization scale uncertainty gets reduced from +/- 13% to +/- 6.5%.
The B -> X_s l+ l- decay rate is known at the next-to-next-to-leading order in QCD. It is proportional to alpha_em (mu)^2 and has a +- 4% scale uncertainty before including the O(alpha_em log(M_W^2/m_b^2)) electromagnetic corrections. We evaluate the
The most general model-independent analysis of the rare $B$ decay, $Bsll$, is presented. There are ten independent local four-Fermi interactions which may contribute to this process. The branching ratio, the forward-backward asymmetry, and the double
The effects of non-local interactions in rare B decays, $Bsll$, are investigated. We show the correlation between the branching ratio and the forward-backward asymmetry via two coefficients of the non-local interactions. This will certainly help us f
We investigate logarithmically enhanced electromagnetic corrections of all angular observables in inclusive B -> X_s l^+ l^-. We present analytical results, which are supplemented by a dedicated Monte Carlo study on the treatment of collinear photons
We study a two loop induced seesaw model with global $U(1)_{B-L}$ symmetry, in which we consider two component dark matter particles. The dark matter properties are investigated together with some phenomenological constraints such as electroweak prec