ترغب بنشر مسار تعليمي؟ اضغط هنا

QED radiative corrections to impact factors

60   0   0.0 ( 0 )
 نشر من قبل Eduard Kuraev
 تاريخ النشر 2000
  مجال البحث
والبحث باللغة English
 تأليف E.A.Kuraev




اسأل ChatGPT حول البحث

We consider the radiative corrections to the impact factors of electron and photon. According to a generalized eikonal representation the ebar e scattering amplitude at high energies and fixed momentum transfers is proportional to the electron form factor. But we show that this representation is violated due to the presence of non-planar diagrams. One loop correction to the photon impact factor for small virtualities of the exchanged photon is obtained using the known results for the cross section of the ebar e production at photon-nuclei interactions.

قيم البحث

اقرأ أيضاً

Neutrino oscillation experiments at accelerator energies aim to establish CP violation in the neutrino sector by measuring the energy-dependent rate of $ u_e$ appearance and $ u_mu$ disappearance in a $ u_mu$ beam. Extracting the correct oscillation rate demands control over QED radiative corrections at the percent level. Focusing on the critical charged-current neutrino-nucleon scattering process, we show that the cross section factorizes into two pieces. The first piece depends on hadron structure but is universal for $ u_e$ and $ u_mu$, and hence constrained by high-statistics $ u_mu$ data. The second piece is nonuniversal and suffers large logarithm enhancements, but is computed to high precision using renormalization group improved perturbation theory. Our results provide a missing ingredient for the robust interpretation of current NOvA and T2K experiments, and can be applied to future experiments such as DUNE and HyperK.
In this paper we show that the excess of the tau tau events with respect to the Standard Model background predictions, observed by the ATLAS and CMS collaborations and interpreted as the evidence of the Higgs-boson decay into a pair of tau-leptons, m ay be accounted for by properly taking into account QED radiative corrections in the modelling of the Z/gamma* -> tau tau background.
At the LHC a precise measurement of the Higgs boson mass (if discovered), at the level of 0.1-1%, will be possible through the channel g g --> H --> 4l for a wide range of Higgs mass values. To match such an accuracy, the systematic effects induced b y QED corrections need to be investigated. In the present study the calculation of O(alpha) and higher order QED corrections is illustrated as well as their impact on the Higgs mass determination, once realistic event selection criteria for charged leptons and photons are considered.
103 - M. Jack 1999
After 10 years of steadily increasing the experimental precision at LEP/SLC, there is a strong demand on an update of existing programs for fermion pair production. We present a rederivation of the O(alpha) Bremsstrahlung corrections to e+e- --> f+f- for the semi-analytic program ZFITTER. We focus on observables like total cross section and forward-backward asymmetry in the leptonic case with combined cuts on acollinearity angle, acceptance angle, and minimal energy of the fermions. The outcome of our analysis is a shift of the predictions by ZFITTER at LEP 1 energies off-resonance of a few per mil while at the Z resonance numerical changes can be neglected. Thus we obtain for cross sections and asymmetries at LEP 1 a level of agreement with other programs of better than per mil, like for the kinematically simpler s cut option. A preliminary analysis of ZFITTER, TOPAZ0, and other codes at LEP 2 energies showing deviations of several per cent with acollinearity cuts enforce a future examination of higher order effects with different cuts. The predictions by LEP/SLC data, however, are not affected within the experimental errors.
We revise the radiative corrections to double-Dalitz decays ($Ptoellbar{ell}ellbar{ell}$), completing the full next-to-leading order calculation in QED as compared to existing calculations. As a result, we find mild differences with respect to previo us studies, that might be relevant for extracting information about the mesons transition form factors. The latter play an important role in determining the hadronic light-by-light contribution to the anomalous magnetic moment of the muon. Finally, we outline an ongoing extension of this work to the $e^+e^-to e^+e^- P$ processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا