ﻻ يوجد ملخص باللغة العربية
The past ten years of physics with e+e- colliding experiments at LEP and SLAC have shown the success of these experiments on not only impressively proving the theoretical predictions of the Standard Model (SM), but also to help provide stringent bounds on physics beyond the SM. With this experience in mind, there appear two equally fascinating opportunities for studying fermion-pair production processes at a future Linear Collider (LC). On the one hand, performing high precision measurements to the SM, for example, when running with high luminosity at the Z boson resonance, could be a quick and feasible enterprise in order to pin down the symmetry breaking mechanism of the electroweak sector through indirectly determining the masses of a light SM or MSSM Higgs boson or supersymmetric particles via virtual corrections. On the other hand, looking for such particles in direct production or other `New Physics effects at energies between, for example, roughly 500 and 800 GeV will naturally be the main motivation to pursue the challenging endeavor of building and utilizing such a unique facility. These two scenarios for the LC shall be sketched here, with particular emphasis on the semi-analytical program ZFITTER for fermion-pair production in comparison with numerical programs like TOPAZ0, KK2f, and others.
After 10 years of steadily increasing the experimental precision at LEP/SLC, there is a strong demand on an update of existing programs for fermion pair production. We present a rederivation of the O(alpha) Bremsstrahlung corrections to e+e- --> f+f-
In this dissertation, a complete calculation of QED radiative corrections is presented for total cross sections and forward- backward asymmetries for s-channel fermion pair production in e+e- annihilation with kinematical cuts to the final state. Thi
We present a description of calculations of the amplitude for E+ E- --> F anti-F process with account of electroweak and QED one-loop corrections. This study is performed within the framework of the project SANC. The calculations are done within the
The paper describes high-precision theoretical predictions obtained for the cross sections of the process $e^+e^- to ZH$ for future electron-positron colliders. The calculations performed using the SANC platform taking into account the full contribut
We have calculated the complete electroweak O(alpha) radiative corrections to the Higgs-boson production process e+ e- -> t anti-t H in the electroweak Standard Model. Initial-state radiation beyond O(alpha) is included in the structure-function appr