ترغب بنشر مسار تعليمي؟ اضغط هنا

Are Kaluza-Klein modes enhanced by parametric resonance?

220   0   0.0 ( 0 )
 نشر من قبل Shinji Tsujikawa
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Tsujikawa




اسأل ChatGPT حول البحث

We study parametric amplification of Kaluza-Klein (KK) modes in a higher $D$-dimensional generalized Kaluza-Klein theory, which was originally considered by Mukohyama in the narrow resonance case. It was suggested that KK modes can be enhanced by an oscillation of a scale of compactification by the $d$-dimensional sphere $S^d~(d=D-4)$ and by the direct product $S^{d_1}times S^{d_2}~(d_1+d_2=D-4)$. We extend this past work to the more general case where initial values of the scale of compactification and the quantum number of the angular momentum $l$ of KK modes are not small. We perform analytic approaches based on the Mathieu equation as well as numerical calculations, and find that the expansion of the universe rapidly makes the KK field deviate from instability bands. As a result, KK modes are not enhanced sufficiently in an expanding universe in these two classes of models.

قيم البحث

اقرأ أيضاً

We investigate the Kaluza-Klein braneworld cosmology from the point of view of observers on the brane. We first generalize the Shiromizu-Maeda-Sasaki (SMS) equations to higher dimensions. As an application, we study a (4+n)-dimensional brane with n d imensions compactified on the brane, in a (5+n)-dimensional bulk. By assuming that the size of the internal space is static, that the bulk energy-momentum tensor can be neglected, we determine the effect of the bulk geometry on the Kaluza-Klein braneworld. Then we derive the effective Friedmann equation on the brane. It turns out that the Friedmann equation explicitly depends on the equation of state, in contrast to the braneworld in a 5-dimensional bulk spacetime. In particular, in a radiation-dominated era, the effective Newton constant depends on the scale factor logarithmically. If we include a pressureless matter on the brane, this dependence disappears after the radiation-matter equality. This may be interpreted as stabilization of the Newton constant by the matter on the brane. Our findings imply that the Kaluza-Klein braneworld cosmology is quite different from the conventional Kaluza-Klein cosmology even at low energy.
We reconsider theories with low gravitational (or string) scale M_* where Newtons constant is generated via new large-volume spatial dimensions, while Standard Model states are localized to a 3-brane. Utilizing compact hyperbolic manifolds (CHMs) we show that the spectrum of Kaluza-Klein (KK) modes is radically altered. This allows an early universe cosmology with normal evolution up to substantial temperatures, and completely negates the constraints on M_* arising from astrophysics. Furthermore, an exponential hierarchy between the usual Planck scale and the true fundamental scale of physics can emerge with only order unity coefficients. The linear size of the internal space remains small. The proposal has striking testable signatures.
We study the membrane wrapping mode corrections to the Kaluza-Klein (KK) 6-brane in eleven dimensions. We examine the localized KK6-brane in the extended space in $E_{7(7)}$ exceptional field theory. In order to discuss the physical origin of the loc alization in the extended space, we consider a probe M2-brane in eleven dimensions. We show that a three-dimensional $mathcal{N} = 4$ gauge theory is naturally interpreted as a membrane generalization of the two-dimensional $mathcal{N} = (4,4)$ gauged linear sigma model for the fundamental string. We point out that the vector field in the $mathcal{N}= 4$ model is identified as a dual coordinate of the KK6-brane geometry. We find that the BPS vortex in the gauge theory gives rise to the violation of the isometry along the dual direction. We then show that the vortex corrections are regarded as an instanton effect in M-theory induced by the probe M2-brane wrapping around the M-circle.
116 - D. Grumiller , R. Jackiw 2008
We discuss the Kaluza-Klein reduction of spaces with (anti-)self-dual Weyl tensor and point out the emergence of the Einstein-Weyl equations for the reduction from four to three dimensions. As a byproduct we get a simple expression for the gravitatio nal instanton density in terms of the Kaluza-Klein functions.
We explore the reach of a 100 TeV proton collider to discover KK gluons in a warped extra dimension. These particles are templates for color adjoint vectors that couple dominantly to the top quark. We examine their production rate at NLO in the six-f lavor m-ACOT scheme for a variety of reference models defining their coupling to quarks, largely inspired by the RS model of a warped extra dimension. In agreement with previous calculations aimed at lower energy machines, we find that the NLO corrections are typically negative, resulting in a $K$-factor of around 0.7 (depending on the model) and with a residual scale dependence on the order of $pm 20%$, greater than the variation from the scale exhibited by the na{i}ve LO estimate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا