ترغب بنشر مسار تعليمي؟ اضغط هنا

Perturbative two- and three-loop coefficients from large beta Monte Carlo

74   0   0.0 ( 0 )
 نشر من قبل Paul Mackenzie
 تاريخ النشر 1999
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Perturbative coefficients for Wilson loops and the static quark self-energy are extracted from Monte Carlo simulations at large beta on finite volumes, where all the lattice momenta are large. The Monte Carlo results are in excellent agreement with perturbation theory through second order. New results for third order coefficients are reported. Twisted boundary conditions are used to eliminate zero modes and to suppress Z_3 tunneling.



قيم البحث

اقرأ أيضاً

Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta are all perturbative. Twisted bou ndary conditions are used to eliminate the effects of lattice zero modes and to suppress nonperturbative finite-volume effects due to Z(3) phases. Simulations of the Wilson gluon action are done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes (from $3^4$ to $16^4$) and couplings (from $beta approx 9$ to $beta approx 60$). A high precision comparison is made between the simulation data and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent agreement with perturbation theory through second order. New results for third-order coefficients for a number of Wilson loops and the static-quark self-energy are reported.
We study thermodynamic properties of Nf=2+1 QCD on the lattice adopting O(a)-improved Wilson quark action and Iwasaki gauge action. To cope with the problems due to explicit violation of the Poincare and chiral symmetries, we apply the Small Flow-tim e eXpansion (SFtX) method based on the gradient flow, which is a general method to correctly calculate any renormalized observables on the lattice. In this method, the matching coefficients in front of operators in the small flow-time expansion are calculated by perturbation theory. In a previous study using one-loop matching coefficients, we found that the SFtX method works well for the equation of state, chiral condensates and susceptibilities. In this paper, we study the effect of two-loop matching coefficients by Harlander et al. We also test the influence of the renormalization scale in the SFtX method. We find that, by adopting the mu_0 renormalization scale of Harlander et al. instead of the conventional mu_d=1/sqrt{8t} scale, the linear behavior at large t is improved so that we can perform the t -> 0 extrapolation of the SFtX method more confidently. In the calculation of the two-loop matching coefficients by Harlander et al., the equation of motion for quark fields was used. For the entropy density in which the equation of motion has no effects, we find that the results using the two-loop coefficients agree well with those using one-loop coefficients. On the other hand, for the trace anomaly which is affected by the equation of motion, we find discrepancies between the one- and two-loop results at high temperatures. By comparing the results of one-loop coefficients with and without using the equation of motion, the main origin of the discrepancies is suggested to be attributed to O((aT)^2)=O(1/N_t^2) discretization errors in the equation of motion at N_t =< 10.
70 - Ettore Vicari 1992
In order to check the validity and the range of applicability of the 1/N expansion, we performed numerical simulations of the two-dimensional lattice CP(N-1) models at large N, in particular we considered the CP(20) and the CP(40) models. Quantitativ e agreement with the large-N predictions is found for the correlation length defined by the second moment of the correlation function, the topological susceptibility and the string tension. On the other hand, quantities involving the mass gap are still far from the large-$N$ results showing a very slow approach to the asymptotic regime. To overcome the problems coming from the severe form of critical slowing down observed at large N in the measurement of the topological susceptibility by using standard local algorithms, we performed our simulations implementing the Simulated Tempering method.
We briefly report our calculation of the 2-loop coefficient of the coupling constant renormalization function Z_g in lattice perturbation theory. The quantity under study is defined through g_0 = Z_g g, where g_0 (g) is the bare (renormalized) coupli ng constant. The 2-loop expression for Z_g can be directly related to the 3-loop bare beta-function beta_L(g_0). Our calculation is performed using overlap fermions and Wilson gluons, and the background field technique has been chosen for convenience. Our results depend explicitly on the number of fermion flavors (N_f) and colors (N). Since the dependence of Z_g on the overlap parameter rho cannot be extracted analytically, we tabulate our results for different values of rho in the allowed range (0<rho<2), focusing on values which are being used most frequently in simulations. Plots of the 1- and 2-loop results for Z_g versus rho exhibit a nontrivial dependence on the overlap parameter. A longer write-up of this work may be found in 0709.4368.
74 - W. Janke , T. Sauer 1993
We report tests of the recently proposed multicanonical multigrid Monte Carlo method for the two-dimensional $Phi^4$ field theory. Defining an effective autocorrelation time we obtain real time improvement factors of about one order of magnitude compared with standard multicanonical simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا