ترغب بنشر مسار تعليمي؟ اضغط هنا

Hadron matrix elements for nucleon decay with the Wilson quark action

162   0   0.0 ( 0 )
 نشر من قبل Naoto Tsutsui
 تاريخ النشر 1998
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report preliminary results of our study of matrix elements of baryon number violating operators which appear in the low-energy effective Lagrangian of (SUSY-)Grand Unified Theories. The calculation is performed on a $32^{3}times80$ lattice at $beta=6.1$ using Wilson fermions in the quenched approximation. Our calculation is independent of details of (SUSY-)GUT models and covers all interesting decay modes.

قيم البحث

اقرأ أيضاً

We present preliminary results of a new lattice computation of hadronic matrix elements of baryon number violating operators which appear in the low-energy effective Lagrangian of (SUSY-)Grand Unified Theories. The contribution of irrelevant form fac tor which has caused an underestimate of the matrix elements in previous studies is subtracted in this calculation. Our results are 2$sim$4 times larger than the most conservative values often employed in phenomenological analyses of nucleon decay with specific GUT models.
We report on the nucleon decay matrix elements with domain-wall fermions in quenched approximation. Results from direct and indirect method are compared with a focus on the process of a proton decaying to a pion and a lepton. We discuss the renormali zation necessary for the matching to the continuum theory. Preliminary results for the renormalized chiral lagrangian parameters are presented.
We present a model-independent calculation of hadron matrix elements for all dimension-six operators associated with baryon number violating processes using lattice QCD. The calculation is performed with the Wilson quark action in the quenched approx imation at $beta=6/g^2=6.0$ on a $28^2times 48times 80$ lattice. Our results cover all the matrix elements required to estimate the partial lifetimes of (proton,neutron)$to$($pi,K,eta$) +(${bar u},e^+,mu^+$) decay modes. We point out the necessity of disentangling two form factors that contribute to the matrix element; previous calculations did not make the separation, which led to an underestimate of the physical matrix elements. With a correct separation, we find that the matrix elements have values 3-5 times larger than the smallest estimates employed in phenomenological analyses of the nucleon decays, which could give strong constraints on several GUT models. We also find that the values of the matrix elements are comparable with the tree-level predictions of chiral lagrangian.
126 - Yasumichi Aoki 2004
The nucleon decay matrix elements of three-quark operators are calculated with domain-wall fermions. Operators are renormalized non-perturbatively to match the MS bar (NDR) scheme at NLO. Quenched simulation studies involve both direct measurement of the matrix elements and the chiral Lagrangian parameters, alpha and beta. We also report on the dynamical quark effects on these parameters.
We report on a calculation of the light hadron spectrum and quark masses in three-flavor dynamical QCD using the non-perturbatively O(a)-improved Wilson quark action and a renormalization-group improved gauge action. Simulations are carried out on a 16^3 times 32 lattice at beta=1.9, where a^{-1} simeq 2GeV, with 6 ud quark masses corresponding to m_{pi}/m_{rho} simeq 0.64-0.77 and 2 s quark masses close to the physical value. We observe that the inclusion of dynamical strange quark brings the lattice QCD meson spectrum to good agreement with experiment. Dynamical strange quarks also lead to a reduction of the uds quark masses by about 15%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا