ترغب بنشر مسار تعليمي؟ اضغط هنا

First determination of the strange and light quark masses from full lattice QCD

87   0   0.0 ( 0 )
 نشر من قبل Quentin Mason
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the strange quark mass $m_s$ and the average of the $u$ and $d$ quark masses $hat m$ using full lattice QCD with three dynamical quarks combined with experimental values for the pion and kaon masses. The simulations have degenerate $u$ and $d$ quarks with masses $m_u=m_dequiv hat m$ as low as $m_s/8$, and two different values of the lattice spacing. The bare lattice quark masses obtained are converted to the $msbar$ scheme using perturbation theory at $O(alpha_s)$. Our results are: $m_s^msbar$(2 GeV) = 76(0)(3)(7)(0) MeV, $hat m^msbar$(2 GeV) = 2.8(0)(1)(3)(0) MeV and $m_s/hat m$ = 27.4(1)(4)(0)(1), where the errors are from statistics, simulation, perturbation theory, and electromagnetic effects, respectively.

قيم البحث

اقرأ أيضاً

We determine the strange and light quark condensates in full lattice QCD for the first time. This is done by direct calculation of the expectation value of the trace of the quark propagator followed by subtraction of the appropriate perturbative cont ribution to convert to a value for the condensate in the MS-bar scheme at 2 GeV. We use lattice QCD configurations including u, d, s and c quarks in the sea with u/d quark masses going down to the physical value. We find the ratio of the strange to the light quark condensate to be 1.08(16).
We determine the strange quark condensate from lattice QCD for the first time and compare its value to that of the light quark and chiral condensates. The results come from a direct calculation of the expectation value of the trace of the quark propa gator followed by subtraction of the appropriate perturbative contribution, derived here, to convert the non-normal-ordered $mbar{psi}psi$ to the $bar{MS}$ scheme at a fixed scale. This is then a well-defined physical `nonperturbative condensate that can be used in the Operator Product Expansion of current-current correlators. The perturbative subtraction is calculated through $mathcal{O}(alpha_s)$ and estimates of higher order terms are included through fitting results at multiple lattice spacing values. The gluon field configurations used are `second generation ensembles from the MILC collaboration that include 2+1+1 flavors of sea quarks implemented with the Highly Improved Staggered Quark action and including $u/d$ sea quarks down to physical masses. Our results are : $<bar{s}{s}>^{bar{MS}}(2 mathrm{GeV})= -(290(15) mathrm{MeV})^3$, $<bar{l}{l}>^{bar{MS}}(2, mathrm{GeV})= -(283(2) mathrm{MeV})^3$, where $l$ is a light quark with mass equal to the average of the $u$ and $d$ quarks. The strange to light quark condensate ratio is 1.08(16). The light quark condensate is significantly larger than the chiral condensate in line with expectations from chiral analyses. We discuss the implications of these results for other calculations.
We calculate the light meson spectrum and the light quark masses by lattice QCD simulation, treating all light quarks dynamically and employing the Iwasaki gluon action and the nonperturbatively O(a)-improved Wilson quark action. The calculations are made at the squared lattice spacings at an equal distance a^2~0.005, 0.01 and 0.015 fm^2, and the continuum limit is taken assuming an O(a^2) discretization error. The light meson spectrum is consistent with experiment. The up, down and strange quark masses in the bar{MS} scheme at 2 GeV are bar{m}=(m_{u}+m_{d})/2=3.55^{+0.65}_{-0.28} MeV and m_s=90.1^{+17.2}_{-6.1} MeV where the error includes statistical and all systematic errors added in quadrature. These values contain the previous estimates obtained with the dynamical u and d quarks within the error.
We calculate the up-, down-, strange-, charm-, and bottom-quark masses using the MILC highly improved staggered-quark ensembles with four flavors of dynamical quarks. We use ensembles at six lattice spacings ranging from $aapprox0.15$~fm to $0.03$~fm and with both physical and unphysical values of the two light and the strange sea-quark masses. We use a new method based on heavy-quark effective theory (HQET) to extract quark masses from heavy-light pseudoscalar meson masses. Combining our analysis with our separate determination of ratios of light-quark masses we present masses of the up, down, strange, charm, and bottom quarks. Our results for the $overline{text{MS}}$-renormalized masses are $m_u(2~text{GeV}) = 2.130(41)$~MeV, $m_d(2~text{GeV}) = 4.675(56)$~MeV, $m_s(2~text{GeV}) = 92.47(69)$~MeV, $m_c(3~text{GeV}) = 983.7(5.6)$~MeV, and $m_c(m_c) = 1273(10)$~MeV, with four active flavors; and $m_b(m_b) = 4195(14)$~MeV with five active flavors. We also obtain ratios of quark masses $m_c/m_s = 11.783(25)$, $m_b/m_s = 53.94(12)$, and $m_b/m_c = 4.578(8)$. The result for $m_c$ matches the precision of the most precise calculation to date, and the other masses and all quoted ratios are the most precise to date. Moreover, these results are the first with a perturbative accuracy of $alpha_s^4$. As byproducts of our method, we obtain the matrix elements of HQET operators with dimension 4 and 5: $overline{Lambda}_text{MRS}=555(31)$~MeV in the minimal renormalon-subtracted (MRS) scheme, $mu_pi^2 = 0.05(22)~text{GeV}^2$, and $mu_G^2(m_b)=0.38(2)~text{GeV}^2$. The MRS scheme [Phys. Rev. D97, 034503 (2018), arXiv:1712.04983 [hep-ph]] is the key new aspect of our method.
Matrix elements of six-quark operators are needed to extract new physics constraints from experimental searches for neutron-antineutron oscillations. This work presents in detail the first lattice quantum chromodynamics calculations of the necessary neutron-antineutron transition matrix elements including calculation methods and discussions of systematic uncertainties. Implications of isospin and chiral symmetry on the matrix elements, power counting in the isospin limit, and renormalization of a chiral basis of six-quark operators are discussed. Calculations are performed with a chiral-symmetric discretization of the quark action and physical light quark masses in order to avoid the need for chiral extrapolation. Non-perturbative renormalization is performed, including a study of lattice cutoff effects. Excited-state effects are studied using two nucleon operators and multiple values of source-sink separation. Results for the dominant matrix elements are found to be significantly larger compared to previous results from the MIT bag model. Future calculations are needed to fully account for systematic uncertainties associated with discretization and finite-volume effects but are not expected to significantly affect this conclusion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا