ترغب بنشر مسار تعليمي؟ اضغط هنا

Negative-Parity Baryons in Quenched Anisotropic Lattice QCD

93   0   0.0 ( 0 )
 نشر من قبل Yukio Nemoto
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study negative-parity baryon spectra in quenched anisotropic lattice QCD. The negative-parity baryons are measured as the parity partner of the ground-state baryons. In addition to the flavor octet and decuplet baryons, we pay much attention to the flavor-singlet negative-parity baryon as a three-quark state and compare it with the Lambda(1405) baryon. Numerical results of the flavor octet and decuplet negative-parity baryon masses are close to experimental values of lowest-lying negative-parity baryons, while the flavor-singlet baryon is much heavier than Lambda(1405). This indicates that the Lambda(1405) would be a multi-quark state such as the N-Kbar molecule rather than the flavor-singlet 3 quark state.



قيم البحث

اقرأ أيضاً

We investigate the negative-parity baryon spectra in quenched lattice QCD. We employ the anisotropic lattice with standard Wilson gauge and O(a) improved Wilson quark actions at three values of lattice spacings with renormalized anisotropy xi=a_sigma /a_tau=4, where a_sigma and a_tau are spatial and temporal lattice spacings, respectively. The negative-parity baryons are measured with the parity projection. In particular, we pay much attention to the lowest SU(3) flavor-singlet negative-parity baryon, which is assigned as the Lambda(1405) in the quark model. For the flavor octet and decuplet negative-parity baryons, the calculated masses are close to the experimental values of corresponding lowest-lying negative-parity baryons. In contrast, the flavor-singlet baryon is found to be about 1.7 GeV, which is much heavier than the Lambda(1405). Therefore, it is difficult to identify the Lambda(1405) to be the flavor-singlet three-quark state, which seems to support an interesting picture of the penta-quark (uds qbar q) state or the N-Kbar molecule for the Lambda(1405).
We review briefly recent studies of the Lambda(1405) spectrum in Lattice QCD. Ordinary three-quark pictures of the Lambda(1405) in quenched Lattice QCD fail to reproduce the mass of the experimental value, which seems to support the penta-quark pictu re for the Lambda(1405) such as a Kbar-N molecule-like state. It is also noted that the present results suffer from relatively large systematic uncertainties coming from the finite volume effect, the chiral extrapolation and the quenching effect.
We present a detailed study of the charmonium spectrum using anisotropic lattice QCD. We first derive a tree-level improved clover quark action on the anisotropic lattice for arbitrary quark mass. The heavy quark mass dependences of the improvement c oefficients, i.e. the ratio of the hopping parameters $zeta=K_t/K_s$ and the clover coefficients $c_{s,t}$, are examined at the tree level. We then compute the charmonium spectrum in the quenched approximation employing $xi = a_s/a_t = 3$ anisotropic lattices. Simulations are made with the standard anisotropic gauge action and the anisotropic clover quark action at four lattice spacings in the range $a_s$=0.07-0.2 fm. The clover coefficients $c_{s,t}$ are estimated from tree-level tadpole improvement. On the other hand, for the ratio of the hopping parameters $zeta$, we adopt both the tree-level tadpole-improved value and a non-perturbative one. We calculate the spectrum of S- and P-states and their excitations. The results largely depend on the scale input even in the continuum limit, showing a quenching effect. When the lattice spacing is determined from the $1P-1S$ splitting, the deviation from the experimental value is estimated to be $sim$30% for the S-state hyperfine splitting and $sim$20% for the P-state fine structure. Our results are consistent with previous results at $xi = 2$ obtained by Chen when the lattice spacing is determined from the Sommer scale $r_0$. We also address the problem with the hyperfine splitting that different choices of the clover coefficients lead to disagreeing results in the continuum limit.
231 - C. B. Lang , V. Verduci 2012
We study the coupled pion-nucleon system (negative parity, isospin 1/2) based on a lattice QCD simulation for nf=2 mass degenerate light quarks. Both, standard 3-quarks baryon operators as well as meson-baryon (4+1)-quark operators are included. This is an exploratory study for just one lattice size and lattice spacing and at a pion mass of 266 MeV. Using the distillation method and variational analysis we determine energy levels of the lowest eigenstates. Comparison with the results of simple 3-quark correlation studies exhibits drastic differences and a new level appears. A clearer picture of the negative parity nucleon spectrum emerges. For the parameters of the simulation we may assume elastic s-wave scattering and can derive values of the phase shift.
266 - T. M. Aliev , K. Azizi , M. Savci 2015
The magnetic moments of the negative parity, spin-1/2 baryons containing single heavy quark are calculated. The pollution that occur from the transitions between positive and negative parity baryons are removed by constructing the sum rules from different Lorentz structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا