ﻻ يوجد ملخص باللغة العربية
Within the reweighting approach, one has the freedom to choose the Monte Carlo action so that it provides a good overlap with the finite-mu measure but remains simple to simulate. We explore several choices of action in the regime of small mu. Simulating with a finite isospin chemical potential mu_I=mu gives a better overlap than the standard choice mu=0, with no computational overhead.
We provide the most accurate results for the QCD transition line so far. We optimize the definition of the crossover temperature $T_c$, allowing for its very precise determination, and extrapolate from imaginary chemical potential up to real $mu_B ap
We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential
We study the density of states method as well as reweighting to explore the low temperature phase diagram of QCD at finite baryon chemical potential. We use four flavors of staggered quarks, a tree-level Symanzik improved gauge action and four stout
We present results for the QCD equation of state, quark densities and susceptibilities at nonzero chemical potential, using 2+1 flavor asqtad ensembles with $N_t=4$. The ensembles lie on a trajectory of constant physics for which $m_{ud}approx0.1m_s$
In this lecture we discuss various properties of the phase factor of the fermion determinant for QCD at nonzero chemical potential. Its effect on physical observables is elucidated by comparing the phase diagram of QCD and phase quenched QCD and by i