ﻻ يوجد ملخص باللغة العربية
We present an update of our study of high temperature QCD with three flavors of quarks, using a Symanzik improved gauge action and the Asqtad staggered quark action. Simulations are being carried out on lattices with Nt=4, 6 and 8 for the case of three degenerate quarks with masses less than or equal to the strange quark mass, $m_s$, and on lattices with Nt=6 and 8 for degenerate up and down quarks with masses in the range 0.2 m_s leq m_{u,d} leq 0.6 m_s, and the strange quark fixed near its physical value. We also report on first computations of quark number susceptibilities with the Asqtad action. These susceptibilities are of interest because they can be related to event-by-event fluctuations in heavy ion collision experiments. Use of the improved quark action leads to a substantial reduction in lattice artifacts. This can be seen already for free fermions and carries over into our results for QCD.
We report on progress in our study of high temperature QCD with three flavors of improved staggered quarks. Simulations are being carried out with three degenerate quarks with masses less than or equal to the strange quark mass, $m_s$, and with degen
We report on a study of QCD thermodynamics with three flavors of quarks, using a Symanzik improved gauge action and the Asqtad O(a^2) improved staggered quark action. Simulations were carried out with lattice spacings 1/4T, 1/6T and 1/8T both for thr
We present results from our simulations of quantum chromodynamics (QCD) with four flavors of quarks: u, d, s, and c. These simulations are performed with a one-loop Symanzik improved gauge action, and the highly improved staggered quark (HISQ) action
We report results for the interaction measure, pressure and energy density for nonzero temperature QCD with 2+1 flavors of improved staggered quarks. In our simulations we use a Symanzik improved gauge action and the Asqtad $O(a^2)$ improved staggere
As one test of the validity of the staggered-fermion fourth-root determinant trick, we examine the suppression of the topological susceptibility of the QCD vacuum in the limit of small quark mass. The suppression is sensitive to the number of light s