ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-lying Eigenvalues of the QCD Dirac Operator at Finite Temperature

120   0   0.0 ( 0 )
 نشر من قبل Urs M. Heller
 تاريخ النشر 2000
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the low-lying spectrum of the staggered Dirac operator above and below the finite temperature phase transition in both quenched QCD and in dynamical four flavor QCD. In both cases we find, in the high temperature phase, a density with close to square root behavior, $rho(lambda) sim (lambda-lambda_0)^{1/2}$. In the quenched simulations we find, in addition, a volume independent tail of small eigenvalues extending down to zero. In the dynamical simulations we also find a tail, decreasing with decreasing mass, at the small end of the spectrum. However, the tail falls off quite quickly and does not seem to extend to zero at these couplings. We find that the distribution of the smallest Dirac operator eigenvalues provides an efficient observable for an accurate determination of the location of the chiral phase transition, as first suggested by Jackson and Verbaarschot.



قيم البحث

اقرأ أيضاً

Topological objects of $SU(3)$ gluodynamics are studied at the infrared scale near the transition temperature with the help of zero and near-zero modes of the overlap Dirac operator. We construct UV filtered topological charge densities corresponding to thr
We discuss the use of Wilson fermions with twisted mass for simulations of QCD thermodynamics. As a prerequisite for a future analysis of the finite-temperature transition making use of automatic O(a) improvement, we investigate the phase structure i n the space spanned by the hopping parameter kappa, the coupling beta, and the twisted mass parameter mu. We present results for N_f=2 degenerate quarks on a 16^3x8 lattice, for which we investigate the possibility of an Aoki phase existing at strong coupling and vanishing mu, as well as of a thermal phase transition at moderate gauge couplings and non-vanishing mu.
In this article, we consider the semiclassical Schrodinger operator $P = - h^{2} Delta + V$ in $mathbb{R}^{d}$ with confining non-negative potential $V$ which vanishes, and study its low-lying eigenvalues $lambda_{k} ( P )$ as $h to 0$. First, we giv e a necessary and sufficient criterion upon $V^{-1} ( 0 )$ for $lambda_{1} ( P ) h^{- 2}$ to be bounded. When $d = 1$ and $V^{-1} ( 0 ) = { 0 }$, we are able to control the eigenvalues $lambda_{k} ( P )$ for monotonous potentials by a quantity linked to an interval $I_{h}$, determined by an implicit relation involving $V$ and $h$. Next, we consider the case where $V$ has a flat minimum, in the sense that it vanishes to infinite order. We give the asymptotic of the eigenvalues: they behave as the eigenvalues of the Dirichlet Laplacian on $I_{h}$. Our analysis includes an asymptotic of the associated eigenvectors and extends in particular cases to higher dimensions.
We study the isoscalar and isovector $J=0,1$ mesons with the overlap operator within two flavour lattice QCD. After subtraction of the lowest-lying Dirac eigenmodes from the valence quark propagator all disconnected contributions vanish and all possi ble point-to-point $J=0$ correlators become identical, signaling a simultaneous restoration of both $SU(2)_L times SU(2)_R$ and $U(1)_A$ symmetries. The ground states of the $pi,sigma,a_0,eta$ mesons do not survive this truncation. All possible $J=1$ states have a very clean exponential decay and become degenerate, demonstrating a $SU(4)$ symmetry of a dynamical QCD-like string.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا