ﻻ يوجد ملخص باللغة العربية
The 1s-2s interval has been measured in the muonium ({$mu^+e^-$}) atom by Doppler-free two-photon laser spectroscopy. The frequency separation of the states was determined to be 2 455 528 941.0(9.8) MHz in good agreement with quantum electrodynamics. The muon-electron mass ratio can be extracted and is found to be 206.768 38(17). The result may be interpreted as measurement of the muon-electron charge ratio as $-1- 1.1(2.1)cdot 10^{-9}$.
We report a new determination of muonium 1S-2S transition frequency and its isotope shift with deuterium by recalibrating the iodine reference lines using an optical frequency comb. The reference lines for the muonium and deuterium 1S-2S transitions
We use the method of double pole QCD sum rule which is basically a fit with two exponentials of the correlation function, where we can extract the masses and decay constants of mesons as a function of the Borel mass. We apply this method to study the
The data for 9.3 million Upsilon(2S) and 20.9 million Upsilon(1S) taken with the CLEO III detector has been used to study the radiative population of states identified by their decay into twenty six different exclusive hadronic final states. In the U
Using samples of 102 million $Upsilon(1S)$ and 158 million $Upsilon(2S)$ events collected with the Belle detector, we study exclusive hadronic decays of these two bottomonium resonances to $ks K^+ pi^-$ and charge-conjugate (c.c.) states, $pi^+ pi^-
We report the observation of $Upsilon(2S)togammaeta_{b}(1S)$ decay based on analysis of the inclusive photon spectrum of $24.7$ fb$^{-1}$ of $e^+ e^-$ collisions at the $Upsilon(2S)$ center-of-mass energy collected with the Belle detector at the KEKB