ﻻ يوجد ملخص باللغة العربية
The current status of tests of the theory of strong interactions, Quantum Chromo Dynamics (QCD), with data from hadron production in e^+e^- annihilation experiments is reviewed. The LEP experiments ALEPH, DELPHI, L3 and OPAL have published many analyses with data recorded on the Z^0 resonance at sqrt(s)=91.2 GeV and above up to sqrt(s)>200 GeV. There are also results from SLD at sqrt(s)=91.2 GeV and from reanalysis of data recorded by the JADE experiment at 14<sqrt(s)<44 GeV. The results of studies of jet and event shape observables, of particle production and of quark gluon jet differences are compared with predictions by perturbative QCD calculations. Determinations of the strong coupling constant alpha_S(M_Z) from jet and event shape observables, scaling violation and fragmentation functions, inclusive observables from Z^0 decays, hadronic tau decays and hadron production in low energy e^+e^- annihilation are discussed. Updates of the measurements are performed where new data or improved calculations have become available. Finally, investigations of the gauge structure of QCD are summarised.
A short review of the history and a slide-show of QCD tests in $e^+e^-$ annihilation is given. The world summary of measurements of $alpha_s$ is updated.
In this note, I will review the opportunities offered by the hint of a new resonance observed at LHC for future e+e- TeV linear collider (LC) projects. This discussion is mainly influenced by two specific scenarios of physics which assume either a (p
This paper intends to collect available data on searches for scalar resonances at LHC. It is suggested that, in the absence of SUSY, the most compelling picture is the composite framework, with the idea that the lightest particles are composite scala
In gauge-Higgs unification the 4D Higgs boson appears as a part of the fifth dimensional component of gauge potentials, namely as a fluctuation mode of the Aharonov-Bohm phase in the extra dimension. The $SO(5) times U(1) times SU(3)$ gauge-Higgs uni
In this work, we consider the process $e^{+}+e^{-}rightarrow bbar{b}+slashed{E}_{T}$, at the future electron-positron colliders such as the International Linear Collider and Compact Linear Collider, to look for the dark matter (DM) effect and identif