ترغب بنشر مسار تعليمي؟ اضغط هنا

Studies of the 4-jet rate and of moments of event shape observables using JADE data

69   0   0.0 ( 0 )
 نشر من قبل Stefan Kluth
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English
 تأليف Stefan Kluth




اسأل ChatGPT حول البحث

Data from e+e- annihilation into hadrons collected by the JADE experiment at centre-of-mass energies between 14 and 44 GeV were used to study the 4-jet rate using the Durham algorithm as well as the first five moments of event shape observables. The data were compared with NLO QCD predictions, augmented by resummed NLLA calculations for the 4-jet rate, in order to extract values of the strong coupling constant alpha_S. The preliminary results are alpha_S(MZ) = 0.1169 +/- 0.0026 (4-jet rate) and alpha_S(MZ) = 0.1286 +/- 0.0072 (moments) consistent with the world average value. For some of the higher moments systematic deficiencies of the QCD predictions are observed.

قيم البحث

اقرأ أيضاً

254 - C. Pahl , S. Kluth , S. Bethke 2004
Data from e+e- annihilation into hadrons collected by the JADE experiment at centre-of-mass energies between 14 GeV and 44 GeV were used to study moments of event shape distributions. The data were compared with Monte Carlo models and with prediction s from QCD NLO order calculations. The strong coupling constant measured from the moments is alpha_S(M_Z) = 0.1286 +/- 0.0007 (stat) +/- 0.0011 (expt) +/- 0.0022 (had) +/- 0.0068 (theo), alpha_S(M_Z) = 0.1286 +/- 0.0072 (total error), consistent with the world average. However, systematic deficiencies in the QCD NLO order predictions are visible for some of the higher moments.
Data from e+e- annihilation into hadrons collected by the JADE experiment at centre-of-mass energies between 14 GeV and 44 GeV are used to study the four-jet event production rate as a function of the Durham jet algorithms resolution parameter ycut. The four-jet rate is compared to QCD next-to-leading order calculations including resummation of large logarithms in the next-to-leading logarithmic approximation. The strong coupling measured from the four-jet rate is as(MZ)=0.1159+-0.0004(stat)+-0.0012(expt)+-0.0024(had)+-0.0007(theo) in agreement with the world average.
70 - Stefan Kluth 2012
We describe a measurement of the strong coupling alpha_S(m_Z) from the 3-jet rate in hadronic final states of e+e- annihilation recorded with the JADE detector at centre-of-mass energies of 14 to 44 GeV. The jets are reconstructed with the Durham jet clustering algorithm. The JADE 3-jet rate data are compared with QCD predictions in NNLO combined with resummed NNLA calculations. We find good agreement between the data and the prediction and extract alpha_S(m_Z)= 0.1199 +/- 0.0010(stat.) +/- 0.0021(exp.) +/- 0.0054(had.) +/- 0.0007(theo.).
151 - J. Schieck , S. Kluth , S. Bethke 2004
Data from e+e- annihilation into hadrons collected by the JADE experiment at centre-of-mass energies between 14 GeV and 44 GeV were used to study the four-jet rate as a function of the Durham algorithms resolution parameter y_cut. The four-jet rate w as compared to a QCD NLO order calculations including NLLA resummation of large logarithms. The strong coupling constant measured from the four-jet rate is alpha_S(M_Z) = 0.1169 +/- 0.0004 (stat) +/- 0.0012 (expt) +/- 0.0021 (had) +/- 0.0007 (theo), alpha_S(M_Z) = 0.1169 +/- 0.0026 (total error) in agreement with the world average.
284 - C. Pahl , S. Bethke , O. Biebel 2009
Predictions of analytical models for hadronisation, namely the dispersive model, the shape function and the single dressed gluon approximation, are compared with moments of hadronic event shape distributions measured in epem annihilation at centre-of -mass energies between 14 and 209 GeV. In contrast to Monte Carlo models for hadronisation, analytical models require to adjust only two universal parameters, the strong coupling and a second quantity parametrising nonperturbative corrections. The extracted values of as are consistent with the world average and competitive with previous measurements. The variance of event shape distributions is compared with predictions given by some of these models. Limitations of the models, probably due to unknown higher order corrections, are demonstrated and discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا