ﻻ يوجد ملخص باللغة العربية
The JHF-Kamioka neutrino project is a second generation long base line neutrino oscillation experiment that probes physics beyond the Standard Model by high precision measurements of the neutrino masses and mixing. A high intensity narrow band neutrino beam is produced by secondary pions created by a high intensity proton synchrotron at JHF (JAERI). The neutrino energy is tuned to the oscillation maximum at ~1 GeV for a baseline length of 295 km towards the world largest water Cerenkov detector, Super-Kamiokande. Its excellent energy resolution and particle identification enable the reconstruction of the initial neutrino energy, which is compared with the narrow band neutrino energy, through the quasi-elastic interaction. The physics goal of the first phase is an order of magnitude better precision in the nu_mu to nu_tau oscillation measurement (delta(Delta m_23^2)=10^-4 eV^2 and delta(sin^22theta_23)=0.01), a factor of 20 more sensitive search in the nu_mu to nu_e appearance (sin^22theta_{mu e} ~ 0.5sin^22theta_{13}>0.003), and a confirmation of the nu_mu to nu_tau oscillation or discovery of sterile neutrinos by detecting the neutral current events. In the second phase, an upgrade of the accelerator from 0.75 MW to 4 MW in beam power and the construction of 1 Mt Hyper-Kamiokande detector at Kamioka site are envisaged. Another order of magnitude improvement in the nu_mu to nu_e oscillation sensitivity, a sensitive search of the CP violation in the lepton sector (CP phase delta down to 10-20 degrees), and an order of magnitude improvement in the proton decay sensitivity is also expected.
This paper updates and improves the study of electron neutrino appearance in the framework of two far detectors at different oscillation maxima, specifically, Tokai-To-Kamioka-to-Korea. We used a likelihood based on reconstructed quantities to distin
The first phase of the long-baseline neutrino experiment, LBNE10, will use a broadband, high-energy neutrino beam with a 10-kt liquid argon TPC at 1300 km to study neutrino oscillation. In this paper, we describe potential upgrades to LBNE10 that use
LHCSpin aims at installing a polarized gas target in front of the LHCb spectrometer, bringing, for the first time, polarized physics to the LHC. The project will benefit from the experience achieved with the installation of an unpolarized gas target
Broad and unexplored kinematic regions can be accessed at the LHC with fixed-target $pp$, $pA$ and $PbA$ collisions at $sqrt{s_{rm{NN}}}=72-115~rm{GeV}$. The LHCb detector is a fully-instrumented forward spectrometer able to run in fixed-target mode,
The Picasso project is a dark matter search experiment based on the superheated droplet technique. Preliminary runs performed at the Picasso Lab in Montreal have showed the suitability of this detection technique to the search for weakly interacting