ﻻ يوجد ملخص باللغة العربية
A recent work showing that homogeneous and isotropic cosmologies involving scalar fields are equivalent to the geodesics of certain effective manifolds is generalized to the non-minimally coupled and anisotropic cases. As the Maupertuis-Jacobi principle in classical mechanics, such result permits us to infer some dynamical properties of cosmological models from the geometry of the associated effective manifolds, allowing us to go a step further in the study of cosmological dynamics. By means of some explicit examples, we show how the geometrical analysis can simplify considerably the dynamical analysis of cosmological models.
In this paper we return to the subject of Jacobi metrics for timelike and null geodsics in stationary spactimes, correcting some previous misconceptions. We show that not only null geodesics, but also timelike geodesics are governed by a Jacobi-Maupe
We study general dynamical equations describing homogeneous isotropic cosmologies coupled to a scalaron $psi$. For flat cosmologies ($k=0$), we analyze in detail the gauge-independent equation describing the differential, $chi(alpha)equivpsi^prime(al
We show that several integrable (i.e., exactly solvable) scalar cosmologies considered by Fre, Sagnotti and Sorin (Nuclear Physics textbf{B 877}(3) (2013), 1028--1106) can be generalized to include cases where the spatial curvature is not zero and, b
We discuss the most general field equations for cosmological spacetimes for theories of gravity based on non-linear extensions of the non-metricity scalar and the torsion scalar. Our approach is based on a systematic symmetry-reduction of the metric-
We examine homogeneous but anisotropic cosmologies in scalar-tensor gravity theories, including Brans-Dicke gravity. We present a method for deriving solutions for any isotropic perfect fluid with a barotropic equation of state ($pproptorho$) in a sp