ترغب بنشر مسار تعليمي؟ اضغط هنا

Variability of signal to noise ratio and the network analysis of gravitational wave burst signals

103   0   0.0 ( 0 )
 نشر من قبل Soumya Mohanty
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The detection and estimation of gravitational wave burst signals, with {em a priori} unknown polarization waveforms, requires the use of data from a network of detectors. For determining how the data from such a network should be combined, approaches based on the maximum likelihood principle have proven to be useful. The most straightforward among these uses the global maximum of the likelihood over the space of all waveforms as both the detection statistic and signal estimator. However, in the case of burst signals, a physically counterintuitive situation results: for two aligned detectors the statistic includes the cross-correlation of the detector outputs, as expected, but this term disappears even for an infinitesimal misalignment. This {em two detector paradox} arises from the inclusion of improbable waveforms in the solution space of maximization. Such waveforms produce widely different responses in detectors that are closely aligned. We show that by penalizing waveforms that exhibit large signal-to-noise ratio (snr) variability, as the corresponding source is moved on the sky, a physically motivated restriction is obtained that (i) resolves the two detector paradox and (ii) leads to a better performing statistic than the global maximum of the likelihood. Waveforms with high snr variability turn out to be precisely the ones that are improbable in the sense mentioned above. The coherent network analysis method thus obtained can be applied to any network, irrespective of the number or the mutual alignment of detectors.



قيم البحث

اقرأ أيضاً

Searches for gravitational wave bursts that are triggered by the observation of astronomical events require a different mode of analysis than all-sky, blind searches. For one, much more prior information is usually available in a triggered search whi ch can and should be used in the analysis. Second, since the data volume is usually small in a triggered search, it is also possible to use computationally more expensive algorithms for tasks such as data pre-processing that can consume significant computing resources in a high data-volume un-triggered search. From the statistical point of view, the reduction in the parameter space search volume leads to higher sensitivity than an un-triggered search. We describe here a data analysis pipeline for triggered searches, called {tt RIDGE}, and present preliminary results for simulated noise and signals.
The LIGO Scientific Collaboration and the Virgo Collaboration have cataloged eleven confidently detected gravitational-wave events during the first two observing runs of the advanced detector era. All eleven events were consistent with being from wel l-modeled mergers between compact stellar-mass objects: black holes or neutron stars. The data around the time of each of these events have been made publicly available through the gravitational-wave open science center. The entirety of the gravitational-wave strain data from the first and second observing runs have also now been made publicly available. There is considerable interest among the broad scientific community in understanding the data and methods used in the analyses. In this paper, we provide an overview of the detector noise properties and the data analysis techniques used to detect gravitational-wave signals and infer the source properties. We describe some of the checks that are performed to validate the analyses and results from the observations of gravitational-wave events. We also address concerns that have been raised about various properties of LIGO-Virgo detector noise and the correctness of our analyses as applied to the resulting data.
Galactic ultra compact binaries are expected to be the dominant source of gravitational waves in the milli-Hertz frequency band. Of the tens of millions of galactic binaries with periods shorter than an hour, it is estimated that a few tens of thousa nd will be resolved by the future Laser Interferometer Space Antenna (LISA). The unresolved remainder will be the main source of ``noise between 1-3 milli-Hertz. Typical galactic binaries are millions of years from merger, and consequently their signals will persist for the the duration of the LISA mission. Extracting tens of thousands of overlapping galactic signals and characterizing the unresolved component is a central challenge in LISA data analysis, and a key contribution to arriving at a global solution that simultaneously fits for all signals in the band. Here we present an end-to-end analysis pipeline for galactic binaries that uses trans-dimensional Bayesian inference to develop a time-evolving catalog of sources as data arrive from the LISA constellation.
Existing coherent network analysis techniques for detecting gravitational-wave bursts simultaneously test data from multiple observatories for consistency with the expected properties of the signals. These techniques assume the output of the detector network to be the sum of a stationary Gaussian noise process and a gravitational-wave signal, and they may fail in the presence of transient non-stationarities, which are common in real detectors. In order to address this problem we introduce a consistency test that is robust against noise non-stationarities and allows one to distinguish between gravitational-wave bursts and noise transients. This technique does not require any a priori knowledge of the putative burst waveform.
Gravitational-wave signals from inspirals of binary compact objects (black holes and neutron stars) are primary targets of the ongoing searches by ground-based gravitational-wave (GW) interferometers (LIGO, Virgo, and GEO-600). We present parameter-e stimation results from our Markov-chain Monte-Carlo code SPINspiral on signals from binaries with precessing spins. Two data sets are created by injecting simulated GW signals into either synthetic Gaussian noise or into LIGO detector data. We compute the 15-dimensional probability-density functions (PDFs) for both data sets, as well as for a data set containing LIGO data with a known, loud artefact (glitch). We show that the analysis of the signal in detector noise yields accuracies similar to those obtained using simulated Gaussian noise. We also find that while the Markov chains from the glitch do not converge, the PDFs would look consistent with a GW signal present in the data. While our parameter-estimation results are encouraging, further investigations into how to differentiate an actual GW signal from noise are necessary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا