ترغب بنشر مسار تعليمي؟ اضغط هنا

Meta-Learning for Phonemic Annotation of Corpora

86   0   0.0 ( 0 )
 نشر من قبل Veronique Hoste
 تاريخ النشر 2000
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We apply rule induction, classifier combination and meta-learning (stacked classifiers) to the problem of bootstrapping high accuracy automatic annotation of corpora with pronunciation information. The task we address in this paper consists of generating phonemic representations reflecting the Flemish and Dutch pronunciations of a word on the basis of its orthographic representation (which in turn is based on the actual speech recordings). We compare several possible approaches to achieve the text-to-pronunciation mapping task: memory-based learning, transformation-based learning, rule induction, maximum entropy modeling, combination of classifiers in stacked learning, and stacking of meta-learners. We are interested both in optimal accuracy and in obtaining insight into the linguistic regularities involved. As far as accuracy is concerned, an already high accuracy level (93% for Celex and 86% for Fonilex at word level) for single classifiers is boosted significantly with additional error reductions of 31% and 38% respectively using combination of classifiers, and a further 5% using combination of meta-learners, bringing overall word level accuracy to 96% for the Dutch variant and 92% for the Flemish variant. We also show that the application of machine learning methods indeed leads to increased insight into the linguistic regularities determining the variation between the two pronunciation variants studied.



قيم البحث

اقرأ أيضاً

Neural network models using predictive coding are interesting from the viewpoint of computational modelling of human language acquisition, where the objective is to understand how linguistic units could be learned from speech without any labels. Even though several promising predictive coding -based learning algorithms have been proposed in the literature, it is currently unclear how well they generalise to different languages and training dataset sizes. In addition, despite that such models have shown to be effective phonemic feature learners, it is unclear whether minimisation of the predictive loss functions of these models also leads to optimal phoneme-like representations. The present study investigates the behaviour of two predictive coding models, Autoregressive Predictive Coding and Contrastive Predictive Coding, in a phoneme discrimination task (ABX task) for two languages with different dataset sizes. Our experiments show a strong correlation between the autoregressive loss and the phoneme discrimination scores with the two datasets. However, to our surprise, the CPC model shows rapid convergence already after one pass over the training data, and, on average, its representations outperform those of APC on both languages.
Large web-crawled corpora represent an excellent resource for improving the performance of Neural Machine Translation (NMT) systems across several language pairs. However, since these corpora are typically extremely noisy, their use is fairly limited . Current approaches to dealing with this problem mainly focus on filtering using heuristics or single features such as language model scores or bi-lingual similarity. This work presents an alternative approach which learns weights for multiple sentence-level features. These feature weights which are optimized directly for the task of improving translation performance, are used to score and filter sentences in the noisy corpora more effectively. We provide results of applying this technique to building NMT systems using the Paracrawl corpus for Estonian-English and show that it beats strong single feature baselines and hand designed combinations. Additionally, we analyze the sensitivity of this method to different types of noise and explore if the learned weights generalize to other language pairs using the Maltese-English Paracrawl corpus.
Crosslingual word embeddings represent lexical items from different languages in the same vector space, enabling transfer of NLP tools. However, previous attempts had expensive resource requirements, difficulty incorporating monolingual data or were unable to handle polysemy. We address these drawbacks in our method which takes advantage of a high coverage dictionary in an EM style training algorithm over monolingual corpora in two languages. Our model achieves state-of-the-art performance on bilingual lexicon induction task exceeding models using large bilingual corpora, and competitive results on the monolingual word similarity and cross-lingual document classification task.
Bill writing is a critical element of representative democracy. However, it is often overlooked that most legislative bills are derived, or even directly copied, from other bills. Despite the significance of bill-to-bill linkages for understanding th e legislative process, existing approaches fail to address semantic similarities across bills, let alone reordering or paraphrasing which are prevalent in legal document writing. In this paper, we overcome these limitations by proposing a 5-class classification task that closely reflects the nature of the bill generation process. In doing so, we construct a human-labeled dataset of 4,721 bill-to-bill relationships at the subsection-level and release this annotated dataset to the research community. To augment the dataset, we generate synthetic data with varying degrees of similarity, mimicking the complex bill writing process. We use BERT variants and apply multi-stage training, sequentially fine-tuning our models with synthetic and human-labeled datasets. We find that the predictive performance significantly improves when training with both human-labeled and synthetic data. Finally, we apply our trained model to infer section- and bill-level similarities. Our analysis shows that the proposed methodology successfully captures the similarities across legal documents at various levels of aggregation.
Grammatical Error Correction (GEC) has been recently modeled using the sequence-to-sequence framework. However, unlike sequence transduction problems such as machine translation, GEC suffers from the lack of plentiful parallel data. We describe two a pproaches for generating large parallel datasets for GEC using publicly available Wikipedia data. The first method extracts source-target pairs from Wikipedia edit histories with minimal filtration heuristics, while the second method introduces noise into Wikipedia sentences via round-trip translation through bridge languages. Both strategies yield similar sized parallel corpora containing around 4B tokens. We employ an iterative decoding strategy that is tailored to the loosely supervised nature of our constructed corpora. We demonstrate that neural GEC models trained using either type of corpora give similar performance. Fine-tuning these models on the Lang-8 corpus and ensembling allows us to surpass the state of the art on both the CoNLL-2014 benchmark and the JFLEG task. We provide systematic analysis that compares the two approaches to data generation and highlights the effectiveness of ensembling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا