ﻻ يوجد ملخص باللغة العربية
The relation between the incommensurability observed in neutron scattering experiments in bilayer cuprate superconductors and the electronic structure is investigated. It is found that the observed incommesurability pattern, as well as its dependence on energy, can be well reproduced by electronic dispersions motivated by angle resolved photoemission data. The commensurate resonance and its contribution to the superconducting condensation energy are discussed in the context of these calculations.
Scaling laws express a systematic and universal simplicity among complex systems in nature. For example, such laws are of enormous significance in biology. Scaling relations are also important in the physical sciences. The seminal 1986 discovery of h
Photoemission spectra of Bi2Sr2CaCu2O8 reveal that the high energy feature near (pi,0), the hump, scales with the superconducting gap and persists above Tc in the pseudogap phase. As the doping decreases, the dispersion of the hump increasingly refle
We have calculated the thermopower of the Bi2Sr2CuO6 and Bi2Sr2CaCu2O8 superconductors using an ARPES-derived dispersion, with a model pseudogap, and a marginal-Fermi liquid scattering rate that has a minimum with respect to energy at the van Hove si
The electronic structure near defects (such as impurities) in superconductors is explored using a new, fully self-consistent technique. This technique exploits the short-range nature of the impurity potential and the induced change in the superconduc
This paper discusses the synthesis, characterization, and comprehensive study of Ba-122 single crystals with various substitutions and various $T_c$. The paper uses five complementary techniques to obtain a self-consistent set of data on the supercon