ﻻ يوجد ملخص باللغة العربية
The weak-localization contribution deltasigma(B) to the conductivity of a tunnel-coupled double-layer electron system is evaluated and its behavior in weak magnetic fields B perpendicular or parallel to the layers is examined. In a perpendicular field B, delta sigma(B) increases and remains dependent on tunneling as long as the magnetic field is smaller than hbar/e D tau_t, where D is the in-plane diffusion coefficient and tau_t the interlayer tunneling time. If tau_t is smaller than the inelastic scattering time, a parallel magnetic field also leads to a considerable increase of the concuctivity starting with a B**2 law and saturating at fields higher than hbar/e Z (D tau_t)**(1/2), where Z is the interlayer distance. In the limit of coherent tunneling, when tau_t is comparable to elastic scattering time, delta sigma(B) differs from that of a single-layer system due to ensuing modifications of the diffusion coefficient. A possibility to probe the weak-localization effect in double-layer systems by the dependence of the conductivity on the gate-controlled level splitting is discussed.
We study the thermal conductivity in disordered $s$-wave superconductors. Expanding on previous works for normal metals, we develop a formalism that tackles particle diffusion as well as the weak localization (WL) and weak anti-localization (WAL) eff
It is well known that conductivity of disordered metals is suppressed in the limit of low frequencies and temperatures by quantum corrections. Although predicted by theory to exist up to much higher energies, such corrections have so far been experim
The results of experimental study of interference induced magnetoconductivity in narrow quantum well HgTe with the normal energy spectrum are presented. Analysis is performed with taking into account the conductivity anisotropy. It is shown that the
Localization lengths of the electrons and holes in InGaN/GaN quantum wells have been calculated using numerical solutions of the effective mass Schrodinger equation. We have treated the distribution of indium atoms as random and found that the result
In the present work, we were able to identify and characterize a new source of in-plane optical anisotropies (IOAs) occurring in asymmetric DQWs; namely a reduction of the symmetry from $D_{2d}$ to $C_{2v}$ as imposed by asymmetry along the growth di