ترغب بنشر مسار تعليمي؟ اضغط هنا

Micro-Raman and resistance measurements of epitaxial La0.7Sr0.3MnO3 films

121   0   0.0 ( 0 )
 نشر من قبل Alec Dediu
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Channel-Spark method was used for deposition of highly oriented ferromagnetic La0.7Sr0.3MnO3 films on NdGaO3 substrates. It was found that additional oxygen decreases the film quality suppressing the Curie temperature and metal-insulator transition below the room temperature. To achieve the best quality of the films the samples were either annealed in high vacuum at deposition temperature or even deposited in argon atmosphere with no oxygen annealing. For such films the resistive measurements showed a metallic behaviour in the interval 10-300 K in accordance with the high Curie point (Tc 350 K). Micro-Raman analysis indicate that the La0.7Sr0.3MnO3 films are well ordered, while some outgrowths show stoichiometrical deviations.



قيم البحث

اقرأ أيضاً

163 - T. K. Nath 2008
Magneto optic measurements are a very powerful tool for investigating the polarization of a conduction band as a function of temperature and are used here to study the polarization of the mobile electrons in 50nm LSMO (x=0.3) strained thin films grow n epitaxially on single crystalline (001) LaAlO3 (LAO) and (001) lattice matched substrate (LSAT). The magnetic circular dichroism (MCD) has been investigated in magnetic fields up to 0.5 T and over a temperature range (10 to 450 K). The MCD spectra of both the films show a peak at the band gap at around 3 eV and the peak is found to be shifted towards lower energy side with the increase of temperature. A separate polaron peak (well known in insulating samples) appears at lower energy (about 1.8 eV) with the increase of temperature in all these metallic films. The rapid decrease in conduction band polarization in the film on LAO has strong implications for the use of these manganites in room temperature spintronics.
Detailed analysis of transport, magnetism and x-ray absorption spectroscopy measurements on ultrathin La0.7Sr0.3MnO3 films with thicknesses from 3 to 70 unit cells resulted in the identification of a lower critical thickness for a non-metallic, non-f erromagnetic layer at the interface with the SrTiO3 (001) substrate of only 3 unit cells (~12 Angstrom). Furthermore, linear dichroism measurements demonstrate the presence of a preferred (x2-y2) in-plane orbital ordering for all layer thicknesses without any orbital reconstruction at the interface. A crucial requirement for the accurate study of these ultrathin films is a controlled growth process, offering the coexistence of layer-by-layer growth and bulk-like magnetic/transport properties.
212 - Wei Yuan , Yuelei Zhao , Chi Tang 2015
La0.7Sr0.3MnO3 (LSMO) films with extraordinarily wide atomic terraces are epitaxially grown on SrTiO3 (100) substrates by pulsed laser deposition. Atomic force microscopy measurements on the LSMO films show that the atomic step is ~ 4 {AA} and the at omic terrace width is more than 2 micrometers. For a 20 monolayers (MLs) LSMO film, the magnetization is determined to be 255 +- 15 emu/cm3 at room temperature, corresponding to 1.70 + - 0.11 Bohr magneton per Mn atom. As the thickness of LSMO increases from 8 MLs to 20 MLs, the critical thickness for the temperature dependent insulator-to-metal behavior transition is shown to be 9 MLs. Furthermore, post-annealing in oxygen environment improves the electron transport and magnetic properties of the LSMO films.
Strong interplay of fundamental order parameters in complex oxides are known to give rise to exotic physical phenomena. The 4d transition metal oxide SrRhO3 has generated much interest, but advances have been hindered by difficulties in preparing sin gle crystalline phases. Here, we have epitaxially stabilized high quality single crystalline SrRhO3 films and investigated their structural, electronic, and magnetic properties. We determine that their properties significantly differ from the paramagnetic metallic ground state that governs bulk samples and are strongly related to rotations of the RhO6 octahedra.
The microstructures and interfaces of two-phase vertically aligned nanocomposite (VAN) thin films play a key role in the design of spintronic device architectures and their multifunctional properties. Here, we show how the microstructures in self-ass embled VAN thin films of La0.7Sr0.3MnO3:NiO (LSMO:NiO) can be effectively tuned from nano-granular to nano-columnar, and to nano-maze by controlling the number of laser shots from the two constituent phase targets in the pulsed laser deposition (PLD) film growth. The observed microstructural induced strain is found to significantly enhance the magnetoresistance in a very broad temperature range between 10-240 K and to modulate the in-plane exchange bias (EB), with the largest EB value observed in the maximally strained heterostructures. Most interestingly, a unique perpendicular exchange bias (PEB) effect is also observed for these heterostructures with an enhanced PEB field of up to 230 Oe. X-ray magnetic circular dichroism and training effect measurements demonstrate that the observed EB is disorder-induced and arises due to the pinning of NiO uncompensated moments at the disordered interface which is ferromagnetically coupled with LSMO. Furthermore, systematic changes in the electronic structure across the vertical interface related to a variation of the Mn3+/Mn4+ content arise as a consequence of out-of-plane tensile strain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا