ﻻ يوجد ملخص باللغة العربية
General Weitzenbock material manifolds of dislocations in crystals Are proposed, the reference, idealized and deformation states of the bodies in general case are generally described by the general manifolds, the topological gauge field theory of dislocations is given in general case,true distributions and evolution of dislocations in crystals are given by the formulas describing dislocations in terms of the general manifolds,furthermore, their properties are discussed.
We develop a non-singular theory of three-dimensional dislocation loops in a particular version of Mindlins anisotropic gradient elasticity with up to six length scale parameters. The theory is systematically developed as a generalization of the clas
This thesis is concerned with a realisation of topological theories in terms of statistical models known as Calabi-Yau crystals. The thesis starts with an introduction and review of topological field and string theories. Subsequently several new resu
We present a self-contained review of the theory of dislocation-mediated quantum melting at zero temperature in two spatial dimensions. The theory describes the liquid-crystalline phases with spatial symmetries in between a quantum crystalline solid
The dislocation-mediated quantum melting of solids into quantum liquid crystals is extended from two to three spatial dimensions, using a generalization of boson-vortex or Abelian-Higgs duality. Dislocations are now Burgers-vector-valued strings that
We consider M-theory on compact spaces of G_2 holonomy constructed as orbifolds of the form (CY x S^1)/Z_2 with fixed point set Sigma on the CY. This describes N=1 SU(2) gauge theories with b_1(Sigma) chiral multiplets in the adjoint. For b_1=0, it g