ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnon Damping by magnon-phonon coupling in Manganese Perovskites

77   0   0.0 ( 0 )
 نشر من قبل Pengcheng Dai
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Inelastic neutron scattering was used to systematically investigate the spin-wave excitations (magnons) in ferromagnetic manganese perovskites. In spite of the large differences in the Curie temperatures ($T_C$s) of different manganites, their low-temperature spin waves were found to have very similar dispersions with the zone boundary magnon softening. From the wavevector dependence of the magnon lifetime effects and its correlation with the dispersions of the optical phonon modes, we argue that a strong magneto-elastic coupling is responsible for the observed low temperature anomalous spin dynamical behavior of the manganites.

قيم البحث

اقرأ أيضاً

Synthetic antiferromagnet, comprised of two ferromagnetic layers separated by a non-magnetic layer, possesses two uniform precession resonance modes: in-phase acoustic mode and out-of-phase optic mode. In this work, we theoretically and numerically d emonstrated the strong coupling between acoustic and optic magnon modes. The strong coupling is attributed to the symmetry breaking of the system, which can be realized by tilting the bias field or constructing an asymmetrical synthetic antiferromagnet. It is found that the coupling strength can be highly adjusted by tuning the tilting angle of bias field, the magnitude of antiferromagnetic interlayer exchange coupling, and the thicknesses of ferromagnetic layers. Furthermore, the coupling between acoustic and optic magnon modes can even reach the ultrastrong coupling regime. Our findings show high promise for investigating quantum phenomenon with a magnonic platform.
We demonstrate a spin to charge current conversion via magnon-phonon coupling and inverse Edelstein effect on the hybrid device Ni/Cu(Ag)/Bi$_{2}$O$_{3}$. The generation of spin current ($J_{s}approx 10^{8}A/m^{2}$) due to magnon - phonon coupling re veals the viability of acoustic spin pumping as mechanism for the development of spintronic devices. A full in-plane magnetic field angle dependence of the power absorption and a combination of longitudinal and transverse voltage detection reveals the symmetric and asymmetric components of the inverse Edelstein effect voltage induced by Rayleigh type surface acoustic waves. While the symmetric components are well studied, asymmetric components are widely unexplored. We assign the asymmetric contributions to the interference between longitudinal and shear waves and an anisotropic charge distribution in our hybrid device.
We address the theory of magnon-phonon interactions and compute the corresponding quasi-particle and transport lifetimes in magnetic insulators with focus on yttrium iron garnet at intermediate temperatures from anisotropy- and exchange-mediated magn on-phonon interactions, the latter being derived from the volume dependence of the Curie temperature. We find in general weak effects of phonon scattering on magnon transport and the Gilbert damping of the macrospin Kittel mode. The magnon transport lifetime differs from the quasi-particle lifetime at shorter wavelengths.
211 - Song Bao , Zhengwei Cai , Wenda Si 2020
We perform thermodynamic and inelastic neutron scattering (INS) measurements to study the lattice dynamics (phonons) of a cubic collinear antiferromagnet Cu$_3$TeO$_6$ which hosts topological spin excitations (magnons). While the specific heat and th ermal conductivity results show that the thermal transport is dominated by phonons, the deviation of the thermal conductivity from a pure phononic model indicates that there is a strong coupling between magnons and phonons. In the INS measurements, we find a mode in the excitation spectra at 4.5 K, which exhibits a slight downward dispersion around the Brillouin zone center. This mode disappears above the N{e}el temperature, and thus cannot be a phonon. Furthermore, the dispersion is distinct from that of a magnon. Instead, it can be explained by the magnon-polaron mode, which is new collective excitations resulting from the hybridization between magnons and phonons. We consider the suppression of the thermal conductivity and emergence of the magnon-polaron mode to be evidence for magnon-phonon coupling in Cu$_3$TeO$_6$.
Exotic quantum vacuum phenomena are predicted in cavity quantum electrodynamics (QED) systems with ultrastrong light-matter interactions. Their ground states are predicted to be vacuum squeezed states with suppressed quantum fluctuations. The source of such phenomena are antiresonant terms in the Hamiltonian, yet antiresonant interactions are typically negligible compared to resonant interactions in light-matter systems. We report an unusual coupled matter-matter system of magnons that can simulate a unique cavity QED Hamiltonian with coupling strengths that are easily tunable into the ultrastrong coupling regime and with dominant antiresonant terms. We found a novel regime where vacuum Bloch-Siegert shifts, the hallmark of antiresonant interactions, greatly exceed analogous frequency shifts from resonant interactions. Further, we theoretically explored the systems ground state and calculated up to 5.9 dB of quantum fluctuation suppression. These observations demonstrate that magnonic systems provide an ideal platform for simulating exotic quantum vacuum phenomena predicted in ultrastrongly coupled light-matter systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا