ﻻ يوجد ملخص باللغة العربية
We formulate the theory of the perturbation caused by an adsorbate upon the substrate lattice in terms of a local modification of the interatomic potential energy around the adsorption site, which leads to the relaxation of substrate atoms. We apply the approach to CO chemisorption on close-packed metal surfaces, and show that the adsorbate-adsorbate interaction and a variety of other properties can be well described by a simple model.
The effects of visible and infrared light on potassium atoms embedded in a nanoporous glass matrix are investigated. Photodesorption by visible light enhances the atomic mobility and causes the formation of metallic nanoparticles. Two different popul
We propose a mechanism to control the interaction between adsorbates on graphene. The interaction between a pair of adsorbates---the change in adsorption energy of one adsorbate in the presence of another---is dominated by the interaction mediated by
We present a study of resonant vibrational coupling between adsorbates and an elastic substrate at low macroscopic coverages. In the first part of the paper we consider the situation when adsorbates form aggregates with high local coverage. Based upo
We show that strong coupling between graphene and the substrate is mitigated when 0.8 monolayer of Na is adsorbed and consolidated on top graphene-on-Ni(111). Specifically, the {pi} state is partially restored near the K-point and the energy gap betw
In studies of dynamical systems, helium atoms scatter coherently from an ensemble of adsorbates as they diffuse on the surface. The results give information on the co-operative behaviour of interacting adsorbates and thus include the effects of both