ترغب بنشر مسار تعليمي؟ اضغط هنا

Josephson effect between Bose condensates

164   0   0.0 ( 0 )
 نشر من قبل Fernando Sols
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Fernando Sols




اسأل ChatGPT حول البحث

I present an overview of the physics of the Josephson effect between Bose condensed systems, with emphasis on the recently achieved BECs in trapped alkali gases. I focus mostly on those physical phenomena that are likely to be observed only (or more easily) in these novel systems. Thus I omit the discussion of problems which may be viewed as straightforward applications of well known Josephson physics. In particular, I review the external and the internal Josephson effects, and discuss how in the latter case it may be possible to explore the crossover between collective Josephson behavior and independent boson Rabi dynamics. I also describe novel macroscopic quantum phenomena such as self-trapping and interference between separate Bose condensates.



قيم البحث

اقرأ أيضاً

121 - Ran Qi , Xiao-Lu Yu , Z. B. Li 2008
We investigate the non-Abelian Josephson effect in spinor Bose-Einstein condensates with double optical traps. We propose, for the first time, a real physical system which contains non-Abelian Josephson effects. The collective modes of this weak coup ling system have very different density and spin tunneling characters comparing to the Abelian case. We calculate the frequencies of the pseudo Goldstone modes in different phases between two traps respectively, which are a crucial feature of the non-Abelian Josephson effects. We also give an experimental protocol to observe this novel effect in future experiments.
We study the entanglement entropy and spectrum between components in binary Bose-Einstein condensates in $d$ spatial dimensions. We employ effective field theory to show that the entanglement spectrum exhibits an anomalous square-root dispersion rela tion in the presence of an intercomponent tunneling (a Rabi coupling) and a gapped dispersion relation in its absence. These spectral features are associated with the emergence of long-range interactions in terms of the superfluid velocity and the particle density in the entanglement Hamiltonian. Our results demonstrate that unusual long-range interactions can be emulated in a subsystem of multicomponent BECs that have only short-range interactions. We also find that for a finite Rabi coupling the entanglement entropy exhibits a volume-law scaling with subleading logarithmic corrections originating from the Nambu-Goldstone mode and the symmetry restoration for a finite volume.
We study the Josephson effect between a conventional s-wave superconductor and a non-centrosymmetric superconductor with Rashba spin-orbit coupling. Rashba spin-orbit coupling affects the Josephson pair tunneling in a characteristic way. The Josephso n coupling can be decomposed into two parts, a `spin-singlet-like and a `spin-triplet-like component. The latter component can lead to shift of the Josephson phase by pi relative to the former coupling. This has important implications on interference effects and may explain some recent experimental results for the Al/CePt3Si junction.
The microscopic theory of Josephson effect in point contacts between two-band superconductors is developed. The general expression for the Josephson current, which is valid for arbitrary temperatures, is obtained. We considered the dirty superconduct ors with interband scattering, which produces the coupling of the Josephson currents between different bands. The influence of phase shifts and interband scattering rates in the banks is analyzed near critical temperature Tc. It is shown that for some values of parameters the critical current can be negative, which means the pi-junction behavior.
581 - G. R. Jin , C. K. Law 2009
We investigate spin squeezing of a two-mode boson system with a Josephson coupling. An exact relation between the squeezing and the single-particle coherence at the maximal-squeezing time is discovered, which provides a more direct way to measure the squeezing by readout the coherence in atomic interference experiments. We prove explicitly that the strongest squeezing is along the $J_z$ axis, indicating the appearance of atom number-squeezed state. Power laws of the strongest squeezing and the optimal coupling with particle number $N$ are obtained based upon a wide range of numerical simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا