ﻻ يوجد ملخص باللغة العربية
A double quantum dot device is a tunable two-level system for electronic energy states. A dc electron current directly measures the rates for elastic and inelastic transitions between the two levels. For inelastic transitions energy is exchanged with bosonic degrees of freedom in the environment. The inelastic transition rates are well described by the Einstein coefficients, relating absorption with stimulated and spontaneous emission. The most effectively coupled bosons in the specific environment of our semiconductor device are acoustic phonons. The experiments demonstrate the importance of vacuum fluctuations in the environment for little circuits of coherent quantum devices.
Studies of thermally induced transport in nanostructures provide access to an exciting regime where fluctuations are relevant, enabling the investigation of fundamental thermodynamic concepts and the realization of thermal energy harvesters. We study
Silicon quantum dots are attractive candidates for the development of scalable, spin-based qubits. Pauli spin blockade in double quantum dots provides an efficient, temperature independent mechanism for qubit readout. Here we report on transport expe
We analyze, from a quantum information theory perspective, the possibility of realizing a SU(4) entangled Kondo regime in semiconductor double quantum dot devices. We focus our analysis on the ground state properties and consider the general experime
The compound semiconductor gallium arsenide (GaAs) provides an ultra-clean platform for storing and manipulating quantum information, encoded in the charge or spin states of electrons confined in nanostructures. The absence of inversion symmetry in t
One obstacle that has slowed the development of electrically gated metal-oxide-semiconductor (MOS) singlet-triplet qubits is the frequent lack of observed spin blockade, even in samples with large singlet-triplet energy splittings. We present theoret