ﻻ يوجد ملخص باللغة العربية
The Comment by Ha et al. [cond-mat/0603787] criticizes our recent result [Phys. Rev. Lett. 96, 038701 (2006)] that the contact process (CP) on uncorrelated scale-free (SF) networks does not behave according to heterogeneous mean-field (MF) theory. This claim is based in Gaussian ansatz that reproduces previously reported density fluctuations and numerical simulations for a particular value of the degree exponent $gamma$ that seem to fit the MF prediction for the density decay exponent $theta$ and a conjecture of the authors of the comment for the finite-size scaling exponente $alpha=beta/ u_perp$. By means of extensive simulations of the CP on random neighbors (RN) SF networks we show that the MF prediction for $theta4 is incorrect for small degree exponents, while the authors conjecture for $alpha$ is at best only approximately valid for the unphysical case of uncorrelated networks with cut-off $k_c sim N^{1/(gamma-1)}$, which can only be constructed in the RN version of SF networks. Therefore, the main conclusion of our paper [Phys. Rev. Lett. 96, 038701 (2006)], the invalidity of MF theory for real uncorrelated SF networks, remains unchallenged.
In Phys. Rev. Lett. 110, 219701 (2013) [arXiv:1211.0843] Billoire et al. criticize the conclusions of our Letter [Phys. Rev. Lett. 109, 177204 (2012), arxiv:1206.0783]. They argue that considering the Edwards-Anderson and Sherrington-Kirkpatrick mode
A recent interesting paper [Yucesoy et al. Phys. Rev. Lett. 109, 177204 (2012), arXiv:1206:0783] compares the low-temperature phase of the 3D Edwards-Anderson (EA) model to its mean-field counterpart, the Sherrington-Kirkpatrick (SK) model. The autho
We reply to the Comment by Mobius and Richter [arXiv:0908.3092, Phys. Rev. Lett. 105, 039701 (2010)] on Density of States and Critical Behavior of the Coulomb Glass [arXiv:0805.4640, Phys. Rev. Lett. 102, 067205 (2009)] and address the issues raised
Randomness and frustration are considered to be the key ingredients for the existence of spin glass (SG) phase. In a canonical system, these ingredients are realized by the random mixture of ferromagnetic (FM) and antiferromagnetic (AF) couplings. Th
This is a reply to the comment from Khemani, Moessner and Sondhi (KMS) [arXiv:2109.00551] on our manuscript [Phys. Rev. Lett. 118, 030401 (2017)]. The main new claim in KMS is that the short-ranged model does not support an MBL DTC phase. We show tha