ﻻ يوجد ملخص باللغة العربية
We present a systematic investigation of the magnetoreflectance of highly oriented pyrolytic graphite in magnetic field B up to 18 T . From these measurements, we report the determination of lifetimes tau associated with the lowest Landau levels in the quantum limit. We find a linear field dependence for inverse lifetime 1/tau(B) of the lowest Landau levels, which is consistent with the hypothesis of a three-dimensional (3D) to 1D crossover in an anisotropic 3D metal in the quantum limit. This enigmatic result uncovers the origin of the anomalous linear in-plane magnetoresistance observed both in bulk graphite and recently in mesoscopic graphite samples.
We report on the magnetic field (0T$ le B le 9$T) dependence of the longitudinal thermal conductivity $kappa(T,B)$ of highly oriented pyrolytic graphite in the temperature range 5 K $le Tle$ 20 K for fields parallel to the $c-$axis. We show that $kap
High resolution magnetoresistance data in highly oriented pyrolytic graphite thin samples manifest non-homogenous superconductivity with critical temperature $T_c sim 25 $K. These data exhibit: i) hysteretic loops of resistance versus magnetic field
Graphite surfaces interact weakly with molecules compared to other conducting surfaces bringing the molecule-molecule interaction to the foreground. C$_{60}$ on highly oriented pyrolytic graphite is a model system for studying the molecular self-asse
A simple and effective stepwise-method has been developed to remove defects from the top graphene layers of highly orientated pyrolytic graphite. Using a combination of ozone exposure and moderately high temperature we have shown that a defect-rich g
Macroscopic concentration of massless charge carriers with linear conic spectrum - Dirac Fermions (DF) - was shown in 2004 to exist in highly oriented pyrolytic graphite (HOPG) and governs its electronic properties. These carriers can have the same n