ﻻ يوجد ملخص باللغة العربية
Measurements of the Hall conductivity in MnSi can provide incisive tests of theories of the anomalous Hall (AH) effect, because both the mean-free-path and magnetoresistance (MR) are unusually large for a ferromagnet. The large MR provides an accurate way to separate the AH conductivity $sigma_{xy}^A$ from the ordinary Hall conductivity $sigma_{xy}^N$. Below the Curie temperature $T_C$, $sigma_{xy}^A$ is linearly proportional to $ M$ (magnetization) with a proportionality constant $S_H$ that is independent of both $T$ and $H$. In particular, $S_H$ remains a constant while $sigma_{xy}^N$ changes by a factor of 100 between 5 K and $T_C$. We discuss implications of the hidden constancy in $S_H$.
Recent small angle neutron scattering suggests, that the spin structure in the A-phase of MnSi is a so-called triple-$Q$ state, i.e., a superposition of three helices under 120 degrees. Model calculations suggest that this structure in fact is a latt
We report the observation of a highly unusual Hall current in the MnSi in an applied pressure P = 6-12 kbar. The Hall conductivity displays a distinctive step-wise field profile quite unlike any other Hall response observed in solids. We identify the
The Shastry-Sutherland model and its generalizations have been shown to capture emergent complex magnetic properties from geometric frustration in several quasi-two-dimensional quantum magnets. Using an $sd$ exchange model, we show here that metallic
We report the observation of a quantum anomalous Hall effect in twisted bilayer graphene showing Hall resistance quantized to within .1% of the von Klitzing constant $h/e^2$ at zero magnetic field.The effect is driven by intrinsic strong correlations
We report on the experimental observation of an anomalous Hall effect (AHE) in highly oriented pyrolytic graphite samples. The overall data indicate that the AHE in graphite can be self-consistently understood within the frameworks of the magnetic-field-driven excitonic pairing models.