ترغب بنشر مسار تعليمي؟ اضغط هنا

A high-reflectivity high-Q micromechanical Bragg-mirror

79   0   0.0 ( 0 )
 نشر من قبل Sylvain Gigan
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the fabrication and characterization of a micromechanical oscillator consisting only of a free-standing dielectric Bragg mirror with high optical reflectivity and high mechanical quality. The fabrication technique is a hybrid approach involving laser ablation and dry etching. The mirror has a reflectivity of 99.6%, a mass of 400ng, and a mechanical quality factor Q of approximately 10^4. Using this micromirror in a Fabry Perot cavity, a finesse of 500 has been achieved. This is an important step towards designing tunable high-Q high-finesse cavities on chip.

قيم البحث

اقرأ أيضاً

The ultrafast response of a high-reflectivity GaAs/AlAs Bragg mirror to optical pumping is investigated for all-optical switching applications. Both Kerr and free carrier nonlinearities are induced with 100 fs, 780 nm pulses with a fluence of 0.64 kJ /m^2 and 0.8 kJ/m^2. The absolute transmission of the mirror at 931 nm increases by a factor of 27 from 0.0024% to 0.065% on a picosecond timescale. These results demonstrate the potential for a high-reflectivity ultrafast switchable mirror for quantum optics and optical communication applications. A design is proposed for a structure to be pumped below the bandgaps of the semiconductor mirror materials. Theoretical calculations on this structure show switching ratios up to 2200 corresponding to switching from 0.017% to 37.4% transmission.
Using Fano-type guided resonances (GRs) in photonic crystal (PhC) slab structures, we numerically and experimentally demonstrate optical reflectivity enhancement of high-Q SiNx membrane-type resonators used in membrane-in-the-middle optomechanical (O M) systems. Normal-incidence transmission and mechanical ringdown measurements of 50-nm-thick PhC membranes demonstrate GRs near 1064 nm, leading to a ~ 4times increase in reflectivity while preserving high mechanical Q factors of up to ~ 5 times 10^6. The results would allow improvement of membrane-in-the-middle OM systems by virtue of increased OM coupling, presenting a path towards ground state cooling of such a membrane and observations of related quantum effects.
110 - Valerie Brien , L. Kubin 2021
This work is focused on the micromechanical modelling of the low cycle fatigue of the nickel based $gamma/gamma$ superalloy AM1 at high temperature. The nature of the activated slip systems in the different types of channels of the $gamma$ phase is a nalysed, taking into account the combined effects of the applied and internal stresses. The latter are split into two contributions, misfit stresses and compatibility stresses between the elastic $gamma$ phase and the elasto-plastic $gamma$ phase, which are estimated within a simplified composite approach. Internal stresses may induce slip activity and/or be relaxed by it, which results in a complex sequence of slip activation events in the different channels under increasing applied stress. The consideration of these effects leads to a prediction of the nature and distribution of the active slip systems within the channels in [001] tension, compression and during low cycle fatigue. The resulting microstructural behaviour and its consequences regarding the anisotropic nature of the coalescence of the $gamma$ precipitates are discussed with respect to the available experimental data.
We report on the lattice evolution of BiFeO3 as function of temperature using far infrared emissivity, reflectivity, and X-ray absorption local structure. A power law fit to the lowest frequency soft phonon in the magnetic ordered phase yields an exp onent {beta}=0.25 as for a tricritical point. At about 200 K below TN~640 K it ceases softening as consequence of BiFeO3 metastability. We identified this temperature as corresponding to a crossover transition to an order-disorder regime. Above ~700 K strong band overlapping, merging, and smearing of modes are consequence of thermal fluctuations and chemical disorder. Vibrational modes show band splits in the ferroelectric phase as emerging from triple degenerated species as from a paraelectric cubic phase above TC~1090 K. Temperature dependent X-ray absorption near edge structure (XANES) at the Fe K-edge shows that lower temperature Fe3+ turns into Fe2+. While this matches the FeO wustite XANES profile, the Bi LIII-edge downshift suggests a high temperature very complex bond configuration at the distorted A perovskite site. Overall, our local structural measurements reveal high temperature defect-induced irreversible lattice changes, below, and above the ferroelectric transition, in an environment lacking of long-range coherence. We did not find an insulator to metal transition prior to melting.
We report on near normal far- and mid-infrared emission and reflectivity of NdMnO3 perovskite from room temperature to sample decomposition above 1800 K. At 300 K the number infrared active phonons is in close agreement with the 25 calculated for the orthorhombic D2h16-Pbnm (Z=4) space group. Their number gradually decreases as we approach the temperature of orbital disorder at ~1023 K where the orthorhombic O lower temperature cooperative phase coexists with the cubic orthorhombic O. At above ~1200 K, the three infrared active phonons coincide with the expected for cubic Pm-3m (Z=1) in the high temperature insulating regime. Heating samples in dry air triggers double exchange conductivity by Mn3+ and Mn4+ ions and a small polaron mid-infrared band. Fits to the optical conductivity single out the octahedral antisymmetric and symmetric vibrational modes as main phonons in the electron-phonon interactions at 875 K. For 1745 K, it is enough to consider the symmetric stretching internal mode. An overdamped defect induced Drude component is clearly outlined at the highest temperatures. We conclude that Rare Earth manganites eg electrons are prone to spin, charge, orbital, and lattice couplings in an intrinsic orbital distorted perovskite lattice favoring embryonic low energy collective excitations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا