ﻻ يوجد ملخص باللغة العربية
Electronic transport properties of two quantum dots side-coupled to a quantum wire are studied by means of the two impurity Anderson Hamiltonian. The conductance is found to be a superposition of a Fano and a Breit-Wigner resonances as a function of the Fermi energy, when the gate voltages of the quantum dots are slightly different. Under this condition, we analyze the time evolution of a Gaussian-shaped superposition of plane waves incoming from the source lead, and found that the wave packet can be splitted into three packets at the drain lead. This spatial pattern manifests in a direct way the peculiarities of the conductance in energy space. We conclude that the device acts as a quantum electron splitter.
The Andreev transport through a quantum dot coupled to two external ferromagnetic leads and one superconducting lead is studied theoretically by means of the real-time diagrammatic technique in the sequential and cotunneling regimes. We show that the
We study the spin-resolved transport through single-level quantum dots strongly coupled to ferromagnetic leads in the Kondo regime, with a focus on contact and material asymmetry-related effects. By using the numerical renormalization group method, w
Spin-polarized transport through a quantum dot strongly coupled to ferromagnetic electrodes with non-collinear magnetic moments is analyzed theoretically in terms of the non-equilibrium Green function formalism. Electrons in the dot are assumed to be
We report on finite bias spectroscopy measurements of the two-electron spectrum in a gate defined bilayer graphene (BLG) quantum dot for varying magnetic fields. The spin and valley degree of freedom in BLG give rise to multiplets of 6 orbital symmet
We use time-resolved charge detection techniques to investigate single-electron tunneling in semiconductor quantum dots. The ability to detect individual charges in real-time makes it possible to count electrons one-by-one as they pass through the st