We present Monte Carlo simulations of hysteresis loops of a model of a magnetic nanoparticle with a ferromagnetic core and an antiferromegnetic shell with varying values of the core/shell interface exchange coupling which aim to clarify the microscopic origin of exchange bias observed experimentally. We have found loops shifts in the field direction as well as displacements along the magnetization axis that increase in magnitude when increasing the interfacial exchange coupling. Ovelap functions computed from the spin configurations along the loops have been computed to explain the origin and magnitude of these features microscopically.
We present an atomistic model of a single nanoparticle with core/shell structure that takes into account its lattice strucutre and spherical geometry, and in which the values of microscopic parameters such as anisotropy and exchange constants can be
tuned in the core, shell and interfacial regions. By means of Monte Carlo simulations of the hysteresis loops based on this model, we have determined the range of microscopic parameters for which loop shifts after field cooling can be observed. The study of the magnetic order of the interfacial spins for different particles sizes and values of the interfacial exchange coupling have allowed us to correlate the appearance of loop asymmetries and vertical displacements to the existence of a fraction of uncompensated spins at the shell interface that remain pinned during field cycling, offering new insight on the microscopic origin of the experimental phenomenology.
Some of the main experimental observations related to the occurrence of exchange bias in magnetic systems are reviewed, focusing the attention on the peculiar phenomenology associated to nanoparticles with core/shell structure as compared to thin fil
m bilayers. The main open questions posed by the experimental observations are presented and contrasted to existing theories and models for exchange bias formulated up to date. We also present results of simulations based on a simple model of a core/shell nanoparticle in which the values of microscopic parameters such as anisotropy and exchange constants can be tuned in the core, shell and at the interfacial regions, offering new insight on the microscopic origin of the experimental phenomenology. A detailed study of the of the magnetic order of the interfacial spins shows compelling evidence that most of the experimentally observed effects can be qualitatively accounted within the context of this model and allows also to quantify the magnitude of the loop shifts with striking agreement with the macroscopic observed values.
We present a numerical simulation study of the exchange bias (EB) effect in nanoparticles with core/shell structure aimed to unveil the microscopic origin of some of the experimental phenomenology associated to this effect. In particular, we have foc
used our study on the particle size and field cooling dependence of the hysteresis loop shifts. To this end, hysteresis loops after a field cooling process have been computed by means of Monte Carlo simulations based on a model that takes into account the peculiar properties of the core, shell and interfacial regions of the particle and the EB and coercive fields have been extracted from them. The results show that, as a general trend, the EB field $h_{EB}$ decreases with increasing particle size, in agreement with some experimental observations. However, closer inspection reveals notable oscillations of $h_{EB}$ as a function of the particle radius which we show to be closely related to the net magnetization established after field cooling at the interfacial shell spins. For a particle with ferromagnetic interface coupling, we show that the magnitude and sign of $h_{EB}$ can be varied with the magnetic field applied during the cooling process.
We present the results of Monte Carlo simulations of the magnetic properties of a model for a single nanoparticle consisting in a ferromagnetic core surrounded by an antiferromagnetic shell. The simulations of hysteresis loops after cooling in a magn
etic field display exchange bias effects. In order to understand the origin of the loop shifts, we have studied the thermal dependence of the shell and interface magnetizations under field cooling. These results, together with inspection of the snapshots of the configurations attained at low temperature, show the existence of a net magnetization at the interface which is responsible for the bias of the hysteresis loops.
Coupling at the interface of core/shell magnetic nanoparticles is known to be responsible for the exchange bias (EB) and the relative sizes of core and shell components are supposed to influence the associated phenomenology. In this work, we have pre
pared core/shell structured nanoparticles with the total averaged diameter around $sim$ 27 nm and a wide range of shell thicknesses through the controlled oxidation of Co nanoparticles well dispersed in an amorphous silica host. Structural characterizations give compelling evidence of the formation of Co$_3$O$_4$ crystallite phase at the shells surrounding the Co core. Field cooled hysteresis loops display nonmonotonous dependence of the exchange bias $H_E$ and coercive $H_C$ fields, that become maximum for a sample with an intermediate shell thickness, at which lattice strain is also maximum for both the phases. Results of our atomistic Monte Carlo simulations of the particles with the same size and compositions as in experiments are in agreement with the experimental observations and have allowed us to identify a change in the contribution of the interfacial surface spins to the magnetization reversal giving rise to the maximum in $H_E$ and $H_C$.
Oscar Iglesias
,Xavier Batlle
,Amilcar Labarta
.
(2006)
.
"Exchange bias and asymmetric hysteresis loops from a microscopic model of core/shell nanoparticles"
.
Oscar Iglesias
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا