ترغب بنشر مسار تعليمي؟ اضغط هنا

Random walks, Avalanches and branching processes

80   0   0.0 ( 0 )
 نشر من قبل John C. Kimball
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bernoulli random walks, a simple avalanche model, and a special branching process are essesntially identical. The identity gives alternative insights into the properties of these basic model sytems.

قيم البحث

اقرأ أيضاً

73 - Ihor Lubashevsky 2011
A continuous Markovian model for truncated Levy random walks is proposed. It generalizes the approach developed previously by Lubashevsky et al. Phys. Rev. E 79, 011110 (2009); 80, 031148 (2009), Eur. Phys. J. B 78, 207 (2010) allowing for nonlinear friction in wondering particle motion and saturation of the noise intensity depending on the particle velocity. Both the effects have own reason to be considered and individually give rise to truncated Levy random walks as shown in the paper. The nonlinear Langevin equation governing the particle motion was solved numerically using an order 1.5 strong stochastic Runge-Kutta method and the obtained numerical data were employed to calculate the geometric mean of the particle displacement during a certain time interval and to construct its distribution function. It is demonstrated that the time dependence of the geometric mean comprises three fragments following one another as the time scale increases that can be categorized as the ballistic regime, the Levy type regime (superballistic, quasiballistic, or superdiffusive one), and the standard motion of Brownian particles. For the intermediate Levy type part the distribution of the particle displacement is found to be of the generalized Cauchy form with cutoff. Besides, the properties of the random walks at hand are shown to be determined mainly by a certain ratio of the friction coefficient and the noise intensity rather then their characteristics individually.
The reproduction speed of a continuous-time branching random walk is proportional to a positive parameter $lambda$. There is a threshold for $lambda$, which is called $lambda_w$, that separates almost sure global extinction from global survival. Anal ogously, there exists another threshold $lambda_s$ below which any site is visited almost surely a finite number of times (i.e.~local extinction) while above it there is a positive probability of visiting every site infinitely many times. The local critical parameter $lambda_s$ is completely understood and can be computed as a function of the reproduction rates. On the other hand, only for some classes of branching random walks it is known that the global critical parameter $lambda_w$ is the inverse of a certain function of the reproduction rates, which we denote by $K_w$. We provide here new sufficient conditions which guarantee that the global critical parameter equals $1/K_w$. This result extends previously known results for branching random walks on multigraphs and general branching random walks. We show that these sufficient conditions are satisfied by periodic tree-like branching random walks. We also discuss the critical parameter and the critical behaviour of continuous-time branching processes in varying environment. So far, only examples where $lambda_w=1/K_w$ were known; here we provide an example where $lambda_w>1/K_w$.
We consider Activated Random Walks on $Z$ with totally asymmetric jumps and critical particle density, with different time scales for the progressive release of particles and the dissipation dynamics. We show that the cumulative flow of particles thr ough the origin rescales to a pure-jump self-similar process which we describe explicitly.
With the purpose of explaining recent experimental findings, we study the distribution $A(lambda)$ of distances $lambda$ traversed by a block that slides on an inclined plane and stops due to friction. A simple model in which the friction coefficient $mu$ is a random function of position is considered. The problem of finding $A(lambda)$ is equivalent to a First-Passage-Time problem for a one-dimensional random walk with nonzero drift, whose exact solution is well-known. From the exact solution of this problem we conclude that: a) for inclination angles $theta$ less than $theta_c=tan(av{mu})$ the average traversed distance $av{lambda}$ is finite, and diverges when $theta to theta_c^{-}$ as $av{lambda} sim (theta_c-theta)^{-1}$; b) at the critical angle a power-law distribution of slidings is obtained: $A(lambda) sim lambda^{-3/2}$. Our analytical results are confirmed by numerical simulation, and are in partial agreement with the reported experimental results. We discuss the possible reasons for the remaining discrepancies.
Intermittent stochastic processes appear in a wide field, such as chemistry, biology, ecology, and computer science. This paper builds up the theory of intermittent continuous time random walk (CTRW) and L{e}vy walk, in which the particles are stocha stically reset to a given position with a resetting rate $r$. The mean squared displacements of the CTRW and L{e}vy walks with stochastic resetting are calculated, uncovering that the stochastic resetting always makes the CTRW process localized and L{e}vy walk diffuse slower. The asymptotic behaviors of the probability density function of Levy walk with stochastic resetting are carefully analyzed under different scales of $x$, and a striking influence of stochastic resetting is observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا