ﻻ يوجد ملخص باللغة العربية
We study the complex-valued resonance spectrum of a dc-SQUID coupled to a flux qubit, where the former is treated in the cubic and the latter in the two-level approximation. It is shown that this spectrum is well-defined and contains most of the relevant information on the escape process. Thus, the language of resonance states is precise and well-adapted to switching- (or trigger-) type qubit readout, and a worthwhile complement to the various descriptions of continuous qubit measurement. Initial progress is analytic, but nonperturbative numerical methods have been formulated and should soon yield accurate results for all parameter values.
By quickly modifying the shape of the effective potential of a double SQUID flux qubit from a single-well to a double-well condition, we experimentally observe an anomalous behavior, namely an alternance of resonance peaks, in the probability to find
We analyze the behavior of a dc Superconducting Quantum Interference Device (SQUID) phase qubit in which one junction acts as a phase qubit and the rest of the device provides isolation from dissipation and noise in the bias leads. Ignoring dissipati
We demonstrate enhancement of the dispersive frequency shift in a coplanar waveguide resonator induced by a capacitively-coupled superconducting flux qubit in the straddling regime. The magnitude of the observed shift, 80 MHz for the qubit-resonator
We measure the dispersive energy-level shift of an $LC$ resonator magnetically coupled to a superconducting qubit, which clearly shows that our system operates in the ultrastrong coupling regime. The large mutual kinetic inductance provides a couplin
Superconducting devices based on the Josephson effect are effectively used for the implementation of qubits and quantum gates. The manipulation of superconducting qubits is generally performed by using microwave pulses with frequencies from 5 to 15 G