ترغب بنشر مسار تعليمي؟ اضغط هنا

Galvanic coupling of flux qubits: simple theory and tunability

55   0   0.0 ( 0 )
 نشر من قبل Alec Maassen van den Brink
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Galvanic coupling of small-area (three-junction) flux qubits, using shared large Josephson junctions, has been shown to yield appreciable interaction strengths in a flexible design, which does not compromise the junctions intrinsic good coherence properties. For an introduction, I recapitulate an elementary derivation of the coupling strength, which is subsequently generalized to the case of tunable coupling for a current-biased shared junction. While the ability to vary coupling constants by, say, 20% would be useful in experiments, sign-tunability (implying switchability) is highly preferable for several quantum-computing paradigms. This note sketches two ideas: a crossbar design with competing ferro- and antiferromagnetic current-biased tunable couplings, and a mediated one involving an extra loop between the qubits. The latter is a variation on proposals for tunable capacitive coupling of charge qubits, and tunable inductive coupling of large-area flux qubits.

قيم البحث

اقرأ أيضاً

It is sketched how a monostable rf- or dc-SQUID can mediate an inductive coupling between two adjacent flux qubits. The nontrivial dependence of the SQUIDs susceptibility on external flux makes it possible to continuously tune the induced coupling fr om antiferromagnetic (AF) to ferromagnetic (FM). In particular, for suitable parameters, the induced FM coupling can be sufficiently large to overcome any possible direct AF inductive coupling between the qubits. The main features follow from a classical analysis of the multi-qubit potential. A fully quantum treatment yields similar results, but with a modified expression for the SQUID susceptibility. Since the latter is exact, it can also be used to evaluate the susceptibility--or, equivalently, energy-level curvature--of an isolated rf-SQUID for larger shielding and at degenerate flux bias, i.e., a (bistable) qubit. The result is compared to the standard two-level (pseudospin) treatment of the anticrossing, and the ensuing conclusions are verified numerically.
We have realized controllable coupling between two three-junction flux qubits by inserting an additional coupler loop between them, containing three Josephson junctions. Two of these are shared with the qubit loops, providing strong qubit--coupler in teraction. The third junction gives the coupler a nontrivial current--flux relation; its derivative (i.e., the susceptibility) determines the coupling strength J, which thus is tunable in situ via the couplers flux bias. In the qubit regime, J was varied from ~45 (antiferromagnetic) to ~ -55 mK (ferromagnetic); in particular, J vanishes for an intermediate coupler bias. Measurements on a second sample illuminate the relation between two-qubit tunable coupling and three-qubit behavior.
We have demonstrated strong antiferromagnetic coupling between two three-junction flux qubits based on a shared Josephson junction, and therefore not limited by the small inductances of the qubit loops. The coupling sign and magnitude were measured b y coupling the system to a high-quality superconducting tank circuit. Design modifications allowing to continuously tune the coupling strength and/or make the coupling ferromagnetic are discussed.
We have studied decoherence in a system where two Josephson-junction flux qubits share a part of their superconducting loops and are inductively coupled. By tuning the flux bias condition, we control the sensitivities of the energy levels to flux noi ses in each qubit. The dephasing rate of the first excited state is enhanced or suppressed depending on the amplitudes and the signs of the sensitivities. We have quantified the $1/f$ flux noises and their correlations and found that the dominant contribution is by local fluctuations.
We report the parametric amplification of a microwave signal in a Kerr medium formed from superconducting qubits. Two mutually coupled flux qubits, embedded in the current antinode of a superconducting coplanar waveguide resonator, are used as a nonl inear element. Shared Josephson junctions provide the qubit-resonator coupling, resulting in a device with a measured gain of about 20 dB. We argue, that this arrangement represents a unit cell which can be straightforwardly extended to a quasi one-dimensional quantum metamaterial with a large tunable Kerr nonlinearity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا