ﻻ يوجد ملخص باللغة العربية
A Molecular Dynamics approach has been used to compute the shear force resulting from the shearing of disks. Two-dimensional monodisperse disks have been put in an horizontal and rectangular shearing cell with periodic boundary conditions on right and left hand sides. The shear is applied by pulling the cover of the cell either at a constant rate or by pulling a spring, linked to the cover, with a constant force. Depending on the rate of shearing and on the elasticity of the whole set up, we showed that the measured shear force signal is either irregular in time, regular in time but not in shape, or regular in shape.
We provide a quantitative analysis of all kinds of topological defects present in 2D passive and active repulsive disk systems. We show that the passage from the solid to the hexatic is driven by the unbinding of dislocations. Instead, although we se
We present an analytical study of a toy model for shear banding, without normal stresses, which uses a piecewise linear approximation to the flow curve (shear stress as a function of shear rate). This model exhibits multiple stationary states, one of
The effect of excluded volume interactions on the structure of a polymer in shear flow is investigated by Brownian Dynamics simulations for chains with size $30leq Nleq 300$. The main results concern the structure factor $S({bf q})$ of chains of N=30
Steady-state pair correlations between inelastic granular beads in a vertically shaken, quasi two-dimensional cell can be mapped onto the particle correlations in a truly two-dimensional reference fluid in thermodynamic equilibrium. Using Granular Dy
We study the influence of particle shape on growth processes at the edges of evaporating drops. Aqueous suspensions of colloidal particles evaporate on glass slides, and convective flows during evaporation carry particles from drop center to drop edg