ﻻ يوجد ملخص باللغة العربية
We present an experimental study of the electronic structure of MnSi. Using X-ray Absorption Spectroscopy, X-ray photoemission and X-ray fluorescence we provide experimental evidence that MnSi has a mixed valence ground state. We show that self consistent LDA supercell calculations cannot replicate the XAS spectra of MnSi, while a good match is achieved within the atomic multiplet theory assuming a mixed valence ground state. We discuss the role of the electron-electron interactions in this compound and estimate that the valence fluctuations are suppressed by a factor of 2.5, which means that the Coulomb repulsion is not negligible.
We conducted a joint experimental-theoretical investigation of the high-pressure chemistry of europium polyhydrides at pressures of 86-130 GPa. We discovered several novel magnetic Eu superhydrides stabilized by anharmonic effects: cubic $EuH_{9}$, h
Potassium-doped terphenyl has recently attracted attention as a potential host for high-transition-temperature superconductivity. Here, we elucidate the many-body electronic structure of recently synthesized potassium-doped terphenyl crystals. We sho
We propose a cellular version of dynamical-mean field theory which gives a natural generalization of its original single-site construction and is formulated in different sets of variables. We show how non-orthogonality of the tight-binding basis sets
We calculate ground-state energies and density distributions of Hubbard superlattices characterized by periodic modulations of the on-site interaction and the on-site potential. Both density-matrix renormalization group and density-functional methods
We introduce a new linear response method to study the lattice dynamics of materials with strong correlations. It is based on a combination of dynamical mean field theory of strongly correlated electrons and the local density functional theory of ele