ترغب بنشر مسار تعليمي؟ اضغط هنا

Ab initio study of the double row model of the Si(553)-Au reconstruction

120   0   0.0 ( 0 )
 نشر من قبل Daniel Sanchez-Portal
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using x-ray diffraction Ghose et al. [Surf. Sci. {bf 581} (2005) 199] have recently produced a structural model for the quantum-wire surface Si(553)-Au. This model presents two parallel gold wires located at the step edge. Thus, the structure and the gold coverage are quite different from previous proposals. We present here an ab initio study using density functional theory of the stability, electronic band structure and scanning tunneling microscopy images of this model.

قيم البحث

اقرأ أيضاً

Recent photoemission experiments on the Si(553)-Au reconstruction show a one-dimensional band with a peculiar ~1/4 filling. This band could provide an opportunity for observing large spin-charge separation if electron-electron interactions could be i ncreased. To this end, it is necessary to understand in detail the origin of this surface band. A first step is the determination of the structure of the reconstruction. We present here a study of several structural models using first-principles density functional calculations. Our models are based on a plausible analogy with the similar and better known Si(557)-Au surface, and compared against the sole structure proposed to date for the Si(553)-Au system [Crain JN et al., 2004 Phys. Rev. B 69 125401 ]. Results for the energetics and the band structures are given. Lines for the future investigation are also sketched.
We determine the stability and properties of interfaces of low-index Au surfaces adhered to TiO2(110), using density functional theory energy density calculations. We consider Au(100) and Au(111) epitaxies on rutile TiO2(110) surface, as observed in experiments. For each epitaxy, we consider several different interfaces: Au(111)//TiO2(110) and Au(100)//TiO2(110), with and without bridging oxygen, Au(111) on 1x2 added-row TiO2(110) reconstruction, and Au(111) on a proposed 1x2 TiO reconstruction. The density functional theory energy density method computes the energy changes on each of the atoms while forming the interface, and evaluates the work of adhesion to determine the equilibrium interfacial structure.
We present here a comprehensive search for the structure of the Si(553)-Au reconstruction. More than two hundred different trial structures have been studied using first-principles density-functional calculations with the SIESTA code. An iterative pr ocedure, with a step-by-step increase of the accuracy and computational cost of the calculations, was used to allow for the study of this large number of configurations. We have considered reconstructions restricted to the topmost bilayer and studied two types: i) flat surface-bilayer models, where atoms at the topmost bilayer present different coordinations and registries with the underlying bulk, and ii) nine different models based on the substitution of a silicon atom by a gold atom in different positions of a $pi$-bonded chain reconstruction of the Si(553) surface. We have developed a compact notation that allows us to label and identify all these structures. This is very useful for the automatic generation of trial geometries and counting the number of inequivalent structures, i.e., structures having different bonding topologies. The most stable models are those that exhibit a honeycomb-chain structure at the step edge. One of our models (model f2) reproduces the main features of the room temperature photoemission and scanning-tunneling microscopy data. Thus we conclude that f2 structure is a good candidate for the high temperature structure of the Si(553)-Au surface.
When gold is deposited on Si(553), the surface self-assembles to form a periodic array of steps with nearly perfect structural order. In scanning tunneling microscopy these steps resemble quasi-one-dimensional atomic chains. At temperatures below ~50 K the chains develop tripled periodicity. We recently predicted, on the basis of density-functional theory calculations at T=0, that this tripled periodicity arises from the complete polarization of the electron spin on every third silicon atom along the step; in the ground state these linear chains of silicon spins are antiferromagnetically ordered. Here we explore, using ab-initio molecular dynamics and kinetic Monte Carlo simulations, the behavior of silicon spin chains on Si(553)-Au at finite temperature. Thermodynamic phase transitions at T>0 in one-dimensional systems are prohibited by the Mermin-Wagner theorem. Nevertheless we find that a surprisingly sharp onset occurs upon cooling---at about 30 K for perfect surfaces and at higher temperature for surfaces with defects---to a well-ordered phase with tripled periodicity, in good agreement with experiment.
We present ab initio results at the density functional theory level for the energetics and kinetics of H_2 and CH_4 in the SI clathrate hydrate. Our results complement a recent article by some of the authors [G. Roman-Perez et al., Phys. Rev. Lett. 1 05, 145901 (2010)] in that we show additional results of the energy landscape of H_2 and CH_4 in the various cages of the host material, as well as further results for energy barriers for all possible diffusion paths of H_2 and CH_4 through the water framework. We also report structural data of the low-pressure phase SI and the higher-pressure phases SII and SH.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا