ﻻ يوجد ملخص باللغة العربية
The metal-insulator transition observed in the In/Si(111)-4x1 reconstruction is studied by means of ab initio calculations of a simplified model of the surface. Different surface bands are identified and classified according to their origin and their response to several structural distortions. We support the, recently proposed [New J. of Phys. 7 (2005) 100], combination of a shear and a Peierls distortions as the origin of the metal-insulator transition. Our results also seem to favor an electronic driving force for the transition.
Hyperdoping Si with chalcogens is a topic of great interest due to the strong sub-bandgap absorption exhibited by the resulting material, which can be exploited to develop broadband room-temperature infrared photodetectors using fully Si-compatible t
Correlated electron systems on a honeycomb lattice have emerged as a fertile playground to explore exotic electronic phenomena. Theoretical and experimental work has appeared to realize novel behavior, including quantum Hall effects and valleytronics
We report an experimental refinement of the local charge density at the Si (111) 7x7 surface utilizing a combination of x-ray and high energy electron diffraction. By perturbing about a bond-centered pseudoatom model, we find experimentally that the
Vanadium dioxide (VO$_2$) undergoes a metal-insulator transition (MIT) at 340 K with the structural change between tetragonal and monoclinic crystals as the temperature is lowered. The conductivity $sigma$ drops at MIT by four orders of magnitude. Th
The emergence of quantization at the nanoscale, the quantum size effect (QSE), allows flexible control of matter and is a rich source of advanced functionalities. A QSE-induced transition into an insulating phase in semimetallic nanofilms was predict