ﻻ يوجد ملخص باللغة العربية
The phase diagram of the two-leg t-Jz ladder is explored, using the density matrix renormalization group method. Results are obtained for energy gaps, electron density profiles and correlation functions for the half-filled and quarter-filled cases. The effective Lagrangian velocity parameter is shown to vanish at half-filling. The behaviour of the one-hole gap in the Nagaoka limit is investigated, and found to disagree with theoretical predictions. A tentative phase diagram is presented, which is quite similar to the full t-J ladder, but scaled up by a factor of about two in coupling. Near half-filling a Luther-Emery phase is found, which may be expected to show superconducting correlations, while near quarter-filling the system appears to be in a Tomonaga-Luttinger phase.
The Heisenberg-Ising spin ladder is one of the few short-range models showing confinement of elementary excitations without the need of an external field, neither transverse nor longitudinal. This feature makes the model suitable for an experimental
Recently, a surprising low-temperature behavior has been revealed in a two-leg ladder Ising model with trimer rungs (Weiguo Yin, arXiv:2006.08921). Motivated by these findings, we study this model from another perspective and demonstrate that the rep
Weakly coupled Ising chains provide a condensed-matter realization of confinement. In these systems, kinks and antikinks bind into mesons due to an attractive interaction potential that increases linearly with the distance between the particles. Whil
We present a variational treatment of the ground state of the 2-leg t-J ladder, which combines the dimer and the hard-core boson models into one effective model. This model allows us to study the local structure of the hole pairs as a function of dop
In this paper we consider the energy and momentum transport in (1+1)-dimension conformal field theories (CFTs) that are deformed by an irrelevant operator $Tbar{T}$, using the integrability based generalized hydrodynamics, and holography. The two com