ﻻ يوجد ملخص باللغة العربية
We investigate how the range of parameters that specify the two-particle distribution function is restricted if we require that this function be obtained from the $n^{rm th}$ order distribution functions that are symmetric with respect to the permutation of any two particles. We consider the simple case when each variable in the distribution functions can take only two values. Results for all $n$ values are given, including the limit of $ntoinfty$. We use our results to obtain bounds on the allowed values of magnetization and magnetic susceptibility in an $n$ particle Fermi fluid.
The local number variance associated with a spherical sampling window of radius $R$ enables a classification of many-particle systems in $d$-dimensional Euclidean space according to the degree to which large-scale density fluctuations are suppressed,
The asymptotic analytic expression for the two-time free energy distribution function in (1+1) random directed polymers is derived in the limit when the two times are close to each other
We study the probability distribution $P(X_N=X,N)$ of the total displacement $X_N$ of an $N$-step run and tumble particle on a line, in presence of a constant nonzero drive $E$. While the central limit theorem predicts a standard Gaussian form for $P
We derive a hierarchy of equations which allow a general $n$-body distribution function to be measured by test-particle insertion of between $1$ and $n$ particles, and successfully apply it to measure the pair and three-body distribution functions in
We consider a single run-and-tumble particle (RTP) moving in one dimension. We assume that the velocity of the particle is drawn independently at each tumbling from a zero-mean Gaussian distribution and that the run times are exponentially distribute