ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum wire fracture and discrete-scale invariance

288   0   0.0 ( 0 )
 نشر من قبل Masanori Yamanaka
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper is a study of the behavior of experimentally observed stress-strain force during the fracture of a quantum wire. The magnitude of the force oscillates as a function of time and can be phenomenologically regarded as a sign of discrete-scale invariance. In the theory of discrete-scale invariance, termination of the wire is regarded as a phase transition. We estimate the critical point and exponents.

قيم البحث

اقرأ أيضاً

67 - Didier Sornette 1997
We discuss the concept of discrete scale invariance and how it leads to complex critical exponents (or dimensions), i.e. to the log-periodic corrections to scaling. After their initial suggestion as formal solutions of renormalization group equations in the seventies, complex exponents have been studied in the eighties in relation to various problems of physics embedded in hierarchical systems. Only recently has it been realized that discrete scale invariance and its associated complex exponents may appear ``spontaneously in euclidean systems, i.e. without the need for a pre-existing hierarchy. Examples are diffusion-limited-aggregation clusters, rupture in heterogeneous systems, earthquakes, animals (a generalization of percolation) among many other systems. We review the known mechanisms for the spontaneous generation of discrete scale invariance and provide an extensive list of situations where complex exponents have been found. This is done in order to provide a basis for a better fundamental understanding of discrete scale invariance. The main motivation to study discrete scale invariance and its signatures is that it provides new insights in the underlying mechanisms of scale invariance. It may also be very interesting for prediction purposes.
As graphene became one of the most important materials today, there is a renewed interest on others similar structures. One example is silicene, the silicon analogue of graphene. It share some the remarkable graphene properties, such as the Dirac con e, but presents some distinct ones, such as a pronounced structural buckling. We have investigated, through density functional based tight-binding (DFTB), as well as reactive molecular dynamics (using ReaxFF), the mechanical properties of suspended single-layer silicene. We calculated the elastic constants, analyzed the fracture patterns and edge reconstructions. We also addressed the stress distributions, unbuckling mechanisms and the fracture dependence on the temperature. We analysed the differences due to distinct edge morphologies, namely zigzag and armchair.
Discrete scale invariance (DSI) is a phenomenon featuring intriguing log-periodicity which can be rarely observed in quantum systems. Here we report the log-periodic quantum oscillations in the magnetoresistance (MR) and the Hall traces of HfTe5 crys tals, which reveals the appearance of DSI. The oscillations show the same logB-periodicity in the behavior of MR and Hall, indicating an overall effect of the DSI on the transport properties. Moreover, the DSI feature in the Hall resistance signals its close relation to the carriers. Combined with theoretical simulations, we further clarify the origin of the log-periodic oscillations and the DSI in the topological materials. Our work evidences the universality of the DSI in the Dirac materials and paves way for the full understanding of the novel phenomenon.
We study the energy spectrum of a two-dimensional electron in the presence of both a perpendicular magnetic field and a potential. In the limit where the potential is small compared to the Landau level spacing, we show that the broadening of Landau l evels is simply expressed in terms of the structure factor of the potential. For potentials that are either periodic or random, we recover known results. Interestingly, for potentials with a dense Fourier spectrum made of Bragg peaks (as found, e.g., in quasicrystals), we find an algebraic broadening with the magnetic field characterized by the hyperuniformity exponent of the potential. Furthermore, if the potential is self-similar such that its structure factor has a discrete scale invariance, the broadening displays log-periodic oscillations together with an algebraic envelope.
Cutting-edge research in the band engineering of nanowires at the ultimate fine scale is related to the minimum scale of a nanowire-based device. The fundamental issue at the subnanometre scale is whether angle-resolved photoemission spectroscopy (AR PES) can be used to directly measure the momentum-resolved electronic structure of a single wire because of the difficulty associated with assembling single wire into an ordered array for such measurements. Here, we demonstrated that the one-dimensional (1D) confinement of electrons, which are transferred from external dopants, within a single subnanometre-scale wire (subnanowire) could be directly measured using ARPES. Convincing evidence of 1D electron confinement was obtained using two different gold subnanowires with characteristic single metallic bands that were alternately and spontaneously ordered on a stepped silicon template, Si(553). Noble metal atoms were adsorbed at room temperature onto the gold subnanowires while maintaining the overall structure of the wires. Only one type of gold subnanowires could be controlled using external noble metal dopants without transforming the metallic band of the other type of gold subnanowires. This result was confirmed by scanning tunnelling microscopy experiments and first-principles calculations. The selective control clearly showed that externally doped electrons could be confined within a single gold subnanowire. This experimental evidence was used to further investigate the effects of the disorder induced by external dopants on a single subnanowire using ARPES.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا