ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous superconductivity and its competition with antiferromagnetism in doped Mott insulators

68   0   0.0 ( 0 )
 نشر من قبل S. S. Kancharla
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Proximity to a Mott insulating phase is likely to be an important physical ingredient of a theory that aims to describe high-temperature superconductivity in the cuprates. Quantum cluster methods are well suited to describe the Mott phase. Hence, as a step towards a quantitative theory of the competition between antiferromagnetism (AFM) and d-wave superconductivity (SC) in the cuprates, we use Cellular Dynamical Mean Field Theory to compute zero temperature properties of the two-dimensional square lattice Hubbard model. The d-wave order parameter is found to scale like the superexchange coupling J for on-site interaction U comparable to or larger than the bandwidth. The order parameter also assumes a dome shape as a function of doping while, by contrast, the gap in the single-particle density of states decreases monotonically with increasing doping. In the presence of a finite second-neighbor hopping t, the zero temperature phase diagram displays the electron-hole asymmetric competition between antiferromagnetism and superconductivity that is observed experimentally in the cuprates. Adding realistic third-neighbor hopping t improves the overall agreement with the experimental phase diagram. Since band parameters can vary depending on the specific cuprate considered, the sensitivity of the theoretical phase diagram to band parameters challenges the commonly held assumption that the doping vs T_{c}/T_{c}^{max} phase diagram of the cuprates is universal. The calculated ARPES spectrum displays the observed electron-hole asymmetry. Our calculations reproduce important features of d-wave superconductivity in the cuprates that would otherwise be considered anomalous from the point of view of the standard BCS approach.



قيم البحث

اقرأ أيضاً

136 - Z.Y. Weng , Y. Zhou , 2003
We propose a class of wave functions that provide a unified description of antiferromagnetism and d-wave superconductivity in (doped) Mott insulators. The wave function has a Jastrow form and prohibits double occupancies. In the absence of holes, the wave function describes antiferromagnetism accurately. Off diagonal long range order develops at finite doping and the superconducting order parameter has d-wave symmetry. We also show how nodal quasiparticles and neutral spin excitations can be constructed from this wave function.
The phase diagram of the layered organic superconductor $kappa$-(ET)$_{2}$Cu[N(CN)$_{2}$]Cl has been accurately measured from a combination of $^{1}$H NMR and AC susceptibility techniques under helium gas pressure. The domains of stability of antifer romagnetic and superconducting long-range orders in the pressure {it vs} temperature plane have been determined. Both phases overlap through a first-order boundary that separates two regions of inhomogeneous phase coexistence. The boundary curve is found to merge with another first order line related to the metal-insulator transition in the paramagnetic region. This transition is found to evolve into a crossover regime above a critical point at higher temperature. The whole phase diagram features a point-like region where metallic, insulating, antiferromagnetic and non s-wave superconducting phases all meet.
A hole injected into a Mott insulator will gain an internal structure as recently identified by exact numerics, which is characterized by a nontrivial quantum number whose nature is of central importance in understanding the Mott physics. In this wor k, we show that a spin texture associated with such an internal degree of freedom can explicitly manifest after the spin degeneracy is lifted by a emph{weak} Rashba spin-orbit coupling (SOC). It is described by an emergent angular momentum $J_{z}=pm3/2$ as shown by both exact diagonalization (ED) and variational Monte Carlo (VMC) calculations, which are in good agreement with each other at a finite size. In particular, as the internal structure such a spin texture is generally present in the hole composite even at high excited energies, such that a corresponding texture in momentum space, extending deep inside the Brillouin zone, can be directly probed by the spin-polarized angle-resolved photoemission spectroscopy (ARPES). This is in contrast to a Landau quasiparticle under the SOC, in which the spin texture induced by SOC will not be protected once the excited energy is larger than the weak SOC coupling strength, away from the Fermi energy. We point out that the spin texture due to the SOC should be monotonically enhanced with reducing spin-spin correlation length in the superconducting/pseudogap phase at finite doping. A brief discussion of a recent experiment of the spin-polarized ARPES will be made.
The Ce compounds CeCoIn$_5$ and CeRhIn$_5$ are ideal model systems to study the competition of antiferromagnetism (AF) and superconductivity (SC). Here we discuss the pressure--temperature and magnetic field phase diagrams of both compounds. In CeRhI n$_5$ the interesting observation is that in zero magnetic field a coexistence AF+SC phase exist inside the AF phase below the critical pressure $p_{rm c}^star approx 2$ GPa. Above $p_{rm c}^star$ AF is suppressed in zero field but can be re-induced by applying a magnetic field. The collapse of AF under pressure coincides with the abrupt change of the Fermi surface. In CeCoIn$_5$ a new phase appears at low temperatures and high magnetic field (LTHF) which vanishes at the upper critical field $H_{rm c2}$. In both compounds the paramagnetic pair breaking effect dominates at low temperature. We discuss the evolution of the upper critical field under high pressure of both compounds and propose a simple picture of the glue of reentrant magnetism to the upper critical field in order to explain the interplay of antiferromagnetic order and superconductivity.
It is widely believed that high-temperature superconductivity in the cuprates emerges from doped Mott insulators. The physics of the parent state seems deceivingly simple: The hopping of the electrons from site to site is prohibited because their on- site Coulomb repulsion U is larger than the kinetic energy gain t. When doping these materials by inserting a small percentage of extra carriers, the electrons become mobile but the strong correlations from the Mott state are thought to survive; inhomogeneous electronic order, a mysterious pseudogap and, eventually, superconductivity appear. How the insertion of dopant atoms drives this evolution is not known, nor whether these phenomena are mere distractions specific to hole-doped cuprates or represent the genuine physics of doped Mott insulators. Here, we visualize the evolution of the electronic states of (Sr1-xLax)2IrO4, which is an effective spin-1/2 Mott insulator like the cuprates, but is chemically radically different. Using spectroscopic-imaging STM, we find that for doping concentration of x=5%, an inhomogeneous, phase separated state emerges, with the nucleation of pseudogap puddles around clusters of dopant atoms. Within these puddles, we observe the same glassy electronic order that is so iconic for the underdoped cuprates. Further, we illuminate the genesis of this state using the unique possibility to localize dopant atoms on topographs in these samples. At low doping, we find evidence for much deeper trapping of carriers compared to the cuprates. This leads to fully gapped spectra with the chemical potential at mid-gap, which abruptly collapse at a threshold of around 4%. Our results clarify the melting of the Mott state, and establish phase separation and electronic order as generic features of doped Mott insulators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا