ﻻ يوجد ملخص باللغة العربية
Conductance quantization was measured in submicron constrictions of PbTe, patterned into narrow,12 nm wide quantum wells deposited between Pb$_{0.92}$Eu$_{0.08}$Te barriers. Because the quantum confinement imposed by the barriers is much stronger than the lateral one, the one-dimensional electron energy level structure is very similar to that usually met in constrictions of AlGaAs/GaAs heterostructures. However, in contrast to any other system studied so far, we observe precise conductance quantization in $2e^2/h$ units, {it despite of significant amount of charged defects in the vicinity of the constriction}. We show that such extraordinary results is a consequence of the paraelectric properties of PbTe, namely, the suppression of long-range tails of the Coulomb potentials due to the huge dielectric constant.
We report on experiments allowing to set an upper limit on the magnitude of the spin Hall effect and the conductance by edge channels in quantum wells of PbTe embedded between PbEuTe barriers. We reexamine previous data obtained for epitaxial microst
Quantum point contacts (QPCs) are cornerstones of mesoscopic physics and central building blocks for quantum electronics. Although the Fermi wave-length in high-quality bulk graphene can be tuned up to hundreds of nanometers, the observation of quant
The effects of electron interaction on the magnetoconductance of graphene nanoribbons (GNRs) are studied within the Hartree approximation. We find that a perpendicular magnetic field leads to a suppression instead of an expected improvement of the qu
We fabricated strongly confined Schottky-gated quantum point contacts by etching Si/SiGe heterostructures and observed intriguing conductance quantization in units of approximately 1e2/h. Non-linear conductance measurements were performed depleting t
We report the experimental observation of conductance quantization in graphene nanoribbons, where 1D transport subbands are formed due to the lateral quantum confinement. We show that this quantization in graphene nanoribbons can be observed at tempe