ﻻ يوجد ملخص باللغة العربية
Thin V2O3 films were deposited on a piezoelectric substrate by electron-beam evaporation. Surface acoustic waves (SAW) were generated by interdigital-transducers (IDTs). The attenuation and sound velocity was investigated from 260K to 10K, providing an insight into the temperature dependent electrical, dielectrical and elastic properties of V2O3 at the metal to insulator transition.
$V_2O_3$ has long been studied as a prototypical strongly correlated material. The difficulty in obtaining clean, well ordered surfaces, however, hindered the use of surface sensitive techniques to study its electronic structure. Here we show by mean
The discovery of novel phases of matter is at the core of modern physics. In quantum materials, subtle variations in atomic-scale interactions can induce dramatic changes in macroscopic properties and drive phase transitions. Despite their importance
Ultrathin epitaxial films of EuNiO3 were grown on a series of substrates traversing highly compressive (- 2.4%) to highly tensile (2.5%) lattice mismatch. X-ray diffraction measurements showed the expected c-lattice parameter shift for compressive st
Despite decades of experimental and theoretical efforts, the origin of metal-insulator transitions (MIT) in strongly-correlated materials is one of the main longstanding problems in condensed matter physics. An archetypal example is V2O3, where elect
We have synthesized epitaxial NdNiO$_{3}$ ultra-thin films in a layer-by-layer growth mode under tensile and compressive strain on SrTiO$_{3}$ (001) and LaAlO$_3$ (001), respectively. A combination of X-ray diffraction, temperature dependent resistiv