ﻻ يوجد ملخص باللغة العربية
We present the exact solutions of various directed walk models of polymers confined to a slit and interacting with the walls of the slit via an attractive potential. We consider three geometric constraints on the ends of the polymer and concentrate on the long chain limit. Apart from the general interest in the effect of geometrical confinement this can be viewed as a two-dimensional model of steric stabilization and sensitized flocculation of colloidal dispersions. We demonstrate that the large width limit admits a phase diagram that is markedly different from the one found in a half-plane geometry, even when the polymer is constrained to be fixed at both ends on one wall. We are not able to find a closed form solution for the free energy for finite width, at all values of the interaction parameters, but we can calculate the asymptotic behaviour for large widths everywhere in the phase plane. This allows us to find the force between the walls induced by the polymer and hence the regions of the plane where either steric stabilization or sensitized flocculation would occur.
We consider a directed walk model of a homopolymer (in two dimensions) which is self-interacting and can undergo a collapse transition, subject to an applied tensile force. We review and interpret all the results already in the literature concerning
An explicit expression is derived for the scattering function of a self-avoiding polymer chain in a $d$-dimensional space. The effect of strength of segment interactions on the shape of the scattering function and the radius of gyration of the chain
We revisit the classical problem of a polymer confined in a slit in both of its static and dynamic aspects. We confirm a number of well known scaling predictions and analyse their range of validity by means of comprehensive Molecular Dynamics simulat
We have explained in detail why the canonical partition function of Interacting Self Avoiding Walk (ISAW), is exactly equivalent to the configurational average of the weights associated with growth walks, such as the Interacting Growth Walk (IGW), if
Using analytical techniques and Langevin dynamics simulations, we investigate the dynamics of polymer translocation into a narrow channel of width $R$ embedded in two dimensions, driven by a force proportional to the number of monomers in the channel