ترغب بنشر مسار تعليمي؟ اضغط هنا

Solitary waves in elongated clouds of strongly-interacting bosons

224   0   0.0 ( 0 )
 نشر من قبل Georgios Kavoulakis
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M.Ogren -




اسأل ChatGPT حول البحث

We examine the propagation of solitary waves in elongated clouds of trapped bosonic atoms as the confinement, the strength of the interatomic interaction, and the atom density are varied. We identify three different physical regimes and develop a general formalism that allows us to interpolate between them. Finally we pay special attention to the transition to the Tonks-Girardeau limit of strongly-interacting bosons.



قيم البحث

اقرأ أيضاً

We investigate the properties of strongly interacting heteronuclear boson-boson mixtures loaded in realistic optical lattices, with particular emphasis on the physics of interfaces. In particular, we numerically reproduce the recent experimental obse rvation that the addition of a small fraction of K induces a significant loss of coherence in Rb, providing a simple explanation. We then investigate the robustness against the inhomogeneity typical of realistic experimental realizations of the glassy quantum emulsions recently predicted to occur in strongly interacting boson-boson mixtures on ideal homogeneous lattices.
121 - P Capuzzi , P Vignolo , F Federici 2005
We evaluate the transition from zero-sound to first-sound behaviour with increasing collisionality in the propagation of density waves through an ultracold gaseous mixture of fermionic atoms confined in the normal state inside a cigar-shaped harmonic trap. We study for this purpose the evolution of the one-body distribution functions associated with a density perturbation generated in the central region of the cloud, as obtained by solving numerically the Vlasov-Landau equations. We examine a variety of trap anisotropies and of repulsive or attractive interaction strengths between the components of the mixture, and the speed of propagation of the density disturbance is found to decrease in both cases as the magnitude of the coupling strength is increased. The results are compared with the values of the speed of zero sound and of first sound, as obtained analytically from the limit of vanishing collisionality and from linearized hydrodynamics. The main effects of the quasi-one-dimensional confinement are the stabilization of zero-sound excitations in the attractive regime before collapse and the lowering of the hydrodynamic sound velocity by a factor sqrt{3/5} relative to three-dimensional behaviour.
Building on the recent experimental achievements obtained with scanning electron microscopy on ultracold atoms, we study one-dimensional Bose gases in the crossover between the weakly (quasi-condensate) and the strongly interacting (Tonks-Girardeau) regime. We measure the temporal two-particle correlation function and compare it with calculations performed using the Time Evolving Block Decimation algorithm. More pronounced antibunching is observed when entering the more strongly interacting regime. Even though this mimics the onset of a fermionic behavior, we highlight that the exact and simple duality between 1D bosons and fermions does not hold when such dynamical response is probed. The onset of fermionization is also reflected in the density distribution, which we measure emph{in situ} to extract the relevant parameters and to identify the different regimes. Our results show agreement between experiment and theory and give new insight into the dynamics of strongly correlated many-body systems.
We calculate the single-particle spectral function for the one-band Bose-Hubbard model within the random phase approximation (RPA). In the strongly correlated superfluid, in addition to the gapless phonon excitations, we find extra gapped modes which become particularly relevant near the superfluid-Mott quantum phase transition (QPT). The strength in one of the gapped modes, a precursor of the Mott phase, grows as the QPT is approached and evolves into a hole (particle) excitation in the Mott insulator depending on whether the chemical potential is above (below) the tip of the lobe. The sound velocity of the Goldstone modes remains finite when the transition is approached at a constant density, otherwise, it vanishes at the transition. It agrees well with Bogoliubov theory except close to the transition. We also calculate the spatial correlations for bosons in an inhomogeneous trapping potential creating alternating shells of Mott insulator and superfluid. Finally, we discuss the capability of the RPA approximation to correctly account for quantum fluctuations in the vicinity of the QPT.
283 - M. White , M. Pasienski , D. McKay 2008
Disorder, prevalent in nature, is intimately involved in such spectacular effects as the fractional quantum Hall effect and vortex pinning in type-II superconductors. Understanding the role of disorder is therefore of fundamental interest to material s research and condensed matter physics. Universal behavior, such as Anderson localization, in disordered non-interacting systems is well understood. But, the effects of disorder combined with strong interactions remains an outstanding challenge to theory. Here, we experimentally probe a paradigm for disordered, strongly-correlated bosonic systems-the disordered Bose-Hubbard (DBH) model-using a Bose-Einstein condensate (BEC) of ultra-cold atoms trapped in a completely characterized disordered optical lattice. We determine that disorder suppresses condensate fraction for superfluid (SF) or coexisting SF and Mott insulator (MI) phases by independently varying the disorder strength and the ratio of tunneling to interaction energy. In the future, these results can constrain theories of the DBH model and be extended to study disorder for strongly-correlated fermionic particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا