ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal relationship between crystallinity and irreversibility field of MgB2

187   0   0.0 ( 0 )
 نشر من قبل Akiyasu Yamamoto
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The relationship between irreversibility field, Hirr, and crystallinity of MgB2 bulks including carbon substituted samples was studied. The Hirr was found to increase with an increase of FWHM of MgB2 (110) peak, which corresponds to distortion of honeycomb boron sheet, and their universal correlation was discovered even including carbon substituted samples. Excellent Jc characteristics under high magnetic fields were observed in samples with large FWHM of (110) due to the enhanced intraband scattering and strengthened grain boundary flux pinning. The relationship between crystallinity and Hirr can explain the large variation of Hirr for MgB2 bulks, tapes, single crystals and thin films.

قيم البحث

اقرأ أيضاً

Low resistivity (clean) MgB2 bulk samples annealed in Mg vapor show an increase in upper critical field Hc2(T) and irreversibility field Hirr(T) by a factor of 2 in both transport and magnetic measurements. The best sample displayed Hirr above 14 T a t 4.2 K and 6 T at 20 K. These changes were accompanied by an increase of the 40 K resistivity from 1.0 to 18 microohm-cm and a lowering of the resistivity ratio from 15 to 3, while the critical temperature Tc decreased by only 1-2 K. These results point the way to make prepare MgB2 attractive for magnet applications.
We investigated the effect of nanoscale-C doping on the critical current density Jc and irreversibility field Birr of Fe-sheathed MgB2 tapes prepared by the in-situ powder-in-tube method. The tapes were heat treated at 600-950C for 1 h. Higher values of Jc and Birr were seen for 5 at.%C-doped MgB2 tapes at higher sintering temperatures, where substantial substitution of boron for carbon occurred. The C-doped samples sintered at 950C showed the highest Birr, for example, at 4.2 K, the Birr reached 22.9 T. In particular, at 20 K, Birr for the C-doped tape achieved 9 T, which is comparable to the upper critical field of the commercial NbTi at 4.2 K. This role of nano-sized C particles can be very beneficial in the fabrication of MgB2 tapes for magnetic resonance imaging applications at 20 K.
We report the synthesis and variation of superconductivity parameters such as transition temperature Tc, upper critical field Hc, critical current density Jc, irreversibility field Hirr and flux pinning parameter (Fp) for the MgB2-xCx system with nan o-Carbon doping up to x=0.20. Carbon substitutes successfully on boron site and results in significant enhancement of Hirr and Jc(H). Resistivity measurements reveal a continuous decrease in Tc under zero applied field, while the same improves remarkably at higher fields with an increase in nano-C content for MgB2-xCx system. The irreversibility field value (Hirr) is 7.6 & 6.6 Tesla at 5 and 10K respectively for the pristine sample, which is enhanced to 13.4 and 11.0 Tesla for x = .08 sample at same temperatures. Compared to undoped sample, critical current density (Jc) for the x=0.08 nano-Carbon doped sample is increased by a factor of 24 at 10K at 6 Tesla field.
We present a detailed study of the electrical transport properties of YBa2Cu3O7-{delta} thin film. The irreversibility fields ({mu}_0 H_irr), upper critical fields ({mu}_0 H_C2), penetration depths ({lambda}) and coherence lengths ({xi} ) of the YBa2 Cu3O7-{delta} materials are deduced from the resistivity curves. Itis observed that {mu}_0 H_irr, {mu}_0 H_C2 and {Delta}Tc of the film strongly depend on the direction and strength of the field. The coherence length {xi} (0) and penetration depth {lambda} (0) values at T = 0 K has been calculated from the irreversibility fields ({mu}_0 H_irr) and upper critical fields ({mu}_0 H_C2) respectively. Based on all the results, the change of the superconducting properties as a function of the magnetic field direction presents the anisotropy of the sample produced.
The normalized probability density function (PDF) of global measures of a large class of highly correlated systems has previously been demonstrated to fall on a single non-Gaussian universal curve. We derive the functional form of the global PDF in t erms of the source PDF of the individual events in the system. A single parameter distinguishes the global PDF and is related to the exponent of the source PDF. When normalized, the global PDF is shown to be insensitive to this parameter and importantly we obtain the previously demonstrated universality from an uncorrelated Gaussian source PDF. The second and third moments of the global PDF are more sensitive, providing a powerful tool to probe the degree of complexity of physical systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا