ترغب بنشر مسار تعليمي؟ اضغط هنا

Chain-oxygen ordering in twin-free YBa2Cu3O6+x single crystals driven by 20 keV electron irradiation

64   0   0.0 ( 0 )
 نشر من قبل Quark Chen
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have examined the effects of 20 keV electron irradiation on [-Cu(1)-O(1)-]n chain oxygen arrangements in oxygen deficient but otherwise twin-free YBa2Cu3O6+x single crystals. Comparison of polarized Raman spectra of non-irradiated and irradiated areas provides evidence that electron bombardments instigate the collective hopping of oxygen atoms either from an interstitial at O(5) site to a vacant O(1) chain site or by reshuffling the chain segments to extend the average length of chains without changing the overall oxygen content. This oxygen ordering effect, while counter-intuitive, is analogous to that found in the photoexcitation induced ordering in which temporal charge imbalance from electron-hole pair creation by inelastic scattering of incident electrons causes a local lattice distortion which brings on the atomic rearrangements.

قيم البحث

اقرأ أيضاً

Observations of topological defects associated with Stone-Wales-type transformations (i.e., bond rotations) in high resolution transmission electron microscopy (HRTEM) images of carbon nanostructures are at odds with the equilibrium thermodynamics of these systems. Here, by combining aberration-corrected HRTEM experiments and atomistic simulations, we show that such defects can be formed by single electron impacts, and remarkably, at electron energies below the threshold for atomic displacements. We further study the mechanisms of irradiation-driven bond rotations, and explain why electron irradiation at moderate electron energies (sim100 keV) tends to amorphize rather than perforate graphene. We also show via simulations that Stone-Wales defects can appear in curved graphitic structures due to incomplete recombination of irradiation-induced Frenkel defects, similar to formation of Wigner-type defects in silicon.
84 - D. Novko , F. Caruso , C. Draxl 2019
The zone-center $E_{2g}$ modes play a crucial role in MgB$_2$, controlling the scattering mechanisms in the normal state as well the superconducting pairing. Here, we demonstrate via first-principles quantum-field theory calculations that, due to the anisotropic electron-phonon interaction, a $hot$-$phonon$ regime where the $E_{2g}$ phonons can achieve significantly larger effective populations than other modes, is triggered in MgB$_2$ by the interaction with an ultra-short laser pulse. Spectral signatures of this scenario in ultrafast pump-probe Raman spectroscopy are discussed in detail, revealing also a fundamental role of nonadiabatic processes in the optical features of the $E_{2g}$ mode.
We report a temperature-dependent increase below 300 K of diffuse superlattice peaks corresponding to q_0 =(~2/5,0,0) in an under-doped YBa_2Cu_3O_6+x superconductor (x~0.63). These peaks reveal strong c-axis correlations involving the CuO_2 bilayers , show a non-uniform increase below ~220 K with a plateau for ~100-160 K, and appear to saturate in the superconducting phase. We interpret this unconventional T-dependence of the ``oxygen-ordering peaks as a manifestation of a charge density wave in the CuO_2 planes coupled to the oxygen-vacancy ordering.
102 - S. L. Budko , S. Nandi , N. Ni 2009
We present thermodynamic, structural and transport measurements on Ba(Fe0.973Cr0.027)2As2 single crystals. All measurements reveal sharp anomalies at ~ 112 K. Single crystal x-ray diffraction identifies the structural transition as a first order, fro m the high-temperature tetragonal I4/mmm to the low-temperature orthorhombic Fmmm structure, in contrast to an earlier report.
86 - W. T. Jin , Y. Xiao , Z. Bukowski 2016
The magnetic ground state of the Eu$^{2+}$ moments in a series of Eu(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ single crystals grown from the Sn flux has been investigated in detail by neutron diffraction measurements. Combined with the results from the macr oscopic properties (resistivity, magnetic susceptibility and specific heat) measurements, a phase diagram describing how the Eu magnetic order evolves with Co doping in Eu(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ is established. The ground-state magnetic structure of the Eu$^{2+}$ spins is found to develop from the A-type antiferromagnetic (AFM) order in the parent compound, via the A-type canted AFM structure with some net ferromagnetic (FM) moment component along the crystallographic $mathit{c}$ direction at intermediate Co doping levels, finally to the pure FM order at relatively high Co doping levels. The ordering temperature of Eu declines linearly at first, reaches the minimum value of 16.5(2) K around $mathit{x}$ = 0.100(4), and then reverses upwards with further Co doping. The doping-induced modification of the indirect Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between the Eu$^{2+}$ moments, which is mediated by the conduction $mathit{d}$ electrons on the (Fe,Co)As layers, as well as the change of the strength of the direct interaction between the Eu$^{2+}$ and Fe$^{2+}$ moments, might be responsible for the change of the magnetic ground state and the ordering temperature of the Eu sublattice. In addition, for Eu(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ single crystals with 0.10 $leqslant$ $mathit{x}$ $leqslant$ 0.18, strong ferromagnetism from the Eu sublattice is well developed in the superconducting state, where a spontaneous vortex state is expected to account for the compromise between the two competing phenomena.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا