ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural phase transformation and phase boundary/stability studies of field-cooled Pb(Mg1/3Nb2/3O3)-32%PbTiO3 crystals

248   0   0.0 ( 0 )
 نشر من قبل Hu Cao
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Structural phase transformations in (001)-oriented (1-x)Pb(Mg1/3Nb2/3O3)-32%PbTiO3 (PMN-x%PT) crystals have been investigated by x-ray diffraction. A C->T->MC sequence was observed in both the field-cooled (FC) and zero-field-cooled (ZFC) conditions. Most interestingly, an anomalous increase in the C->T phase boundary with increasing field has been observed, which is seemingly a common characteristic of crystals whose compositions are in the vicinity of the MPB, irrespective of the width of the T and MC phase regions.



قيم البحث

اقرأ أيضاً

We report neutron inelastic scattering on single crystal 0.68Pb(Mg1/3Nb2/3O3)-0.32PbTiO3 (PMN-0.32PT), a relaxor ferroelectric material that lies within the compositional range of the morphotropic phase boundary (MPB). Data were obtained between 100 K and 600 K under zero and non-zero electric field applied along the cubic [001] direction. The lowest energy, zone-center, transverse optic phonon is strongly damped and softens slowly at high temperature; however the square of the soft mode energy begins to increase linearly with temperature as in a conventional ferroelectric, which we term the soft mode recovery, upon cooling into the tetragonal phase at TC. Our data show that the soft mode in PMN-0.32PT behaves almost identically to that in pure PMN, exhibiting the same temperature dependence and recovery temperature even though PMN exhibits no well-defined structural transition (no TC). The temperature dependence of the soft mode in PMN-0.32PT is also similar to that in PMN-0.60PT; however in PMN-0.60PT the recovery temperature equals TC. These results suggest that the temperature dependence and the energy scale of the soft mode dynamics in PMN-xPT are independent of concentration on the Ti-poor side of the MPB, but scale with TC for Ti-rich compositions. Thus the MPB may be defined in lattice dynamical terms as the concentration where TC first matches the recovery temperature of the soft mode. High-resolution x-ray studies show that the cubic-to-ferroelectric phase boundary shifts to higher temperatures by an abnormal amount within the MPB region in the presence of an electric field. This suggests that an unusual instability exists within the apparently cubic phase at the MPB.
Single crystals of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) poled along [001] were investigated by dielectric, x-ray, and polarized light (PLM) and piezo-force microscopy (PFM) methods. PLM revealed {100} macro-domain plates that formed after poling, whose size increased on heating between room temperature and a rhombohedral rightarrow tetragonal phase transition, above which point a break-up of the macro-domain plates was observed. Corresponding PFM studies demonstrated that poling reduced the size of stripe-like domains that were internal to the macro-domain plates, whose size also increased on heating to TR-T. The temperature dependence of both the size of the macro-domain plates and internal sub-domains followed the Arrhenius relation with the activation energy of 0.4-0.5eV. The coercive field displays an abnormal increase on heating below TR-T, different than that for PMN-PT. The anomalously increased coercive field can be ascribed to the Arrhenius-type domain growth, indicating a simple thermally activated process and an important role of hierarchial domains in the improved performance of PIN-PMN-PT.
The structural phase transformations of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-30%PT) have been studied using x-ray diffraction (XRD) and neutron scattering as a function of temperature and electric field. We observe the phase transformational sequence ( i) cubic (C)-> tetragonal (T)-> rhombohedral (R) in the zero-field-cooled (or ZFC) condition; (ii) C->T-> monoclinic (MC)-> monoclinic (MA) in the field-cooled (or FC) condition; and (iii) R->MA->MC->T with increasing field at fixed temperature beginning from the ZFC condition. Upon removal of the field, the MA phase is stable at room temperature in the FC condition, and also in the ZFC condition with increasing field. Several subtleties of our findings are discussed based on results from thermal expansion and dielectric measurements, including (i) the stability of the MA phase; (ii) a difference in lattice parameters between inside bulk and outside layer regions; and (iii) the diffuse nature of the MA and MC phase transition.
Neutron and x-ray diffraction techniques have been used to study the competing long and short-range polar order in the relaxor ferroelectric Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$ (PMN) under a [111] applied electric field. Despite reports of a structural t ransition from a cubic phase to a rhombohedral phase for fields E $>$ 1.7 kV/cm, we find that the bulk unit cell remains cubic (within a sensitivity of 90$^{circ}$-$alpha$ =0.03$^{circ}$)for fields up to 8 kV/cm. Furthermore, we observe a structural transition confined to the near surface volume or `skin of the crystal where the cubic cell is transformed to a rhombohedral unit cell at T$_{c}$=210 K for E $>$ 4 kV/cm, for which 90$^{circ}$-$alpha$=0.08 $pm$ 0.03$^{circ}$ below 50 K. While the bulk unit cell remains cubic, a suppression of the diffuse scattering and concomitant enhancement of the Bragg peak intensity is observed below T$_{c}$=210 K, indicating a more ordered structure with increasing electric field yet an absence of a long-range ferroelectric ground state in the bulk. The electric field strength has little effect on the diffuse scattering above T$_{c}$, however below T$_{c}$ the diffuse scattering is reduced in intensity and adopts an asymmetric lineshape in reciprocal space. The absence of hysteresis in our neutron measurements (on the bulk) and the presence of two distinct temperature scales suggests that the ground state of PMN is not a frozen glassy phase as suggested by some theories but is better understood in terms of random fields introduced through the presence of structural disorder. Based on these results, we also suggest that PMN represents an extreme example of the two-length scale problem, and that the presence of a distinct skin maybe necessary for a relaxor ground state.
The temperature dependence of elastic, dielectric, and piezoelectric properties of (65-x)Pb(Mg1/3Nb2/3)O3-xBaTiO335-PbTiO3 ceramics with x=0, 1, 2, 3, and 4 was investigated. Compound with x=2 was found to exhibit a large piezoelectric response (d31= -170 pC/N, d33=530 pC/N at 300 K). Particularly, its d31 value was nearly a constant over a temperature range from 185 to 360 K. A broad ferroelectric phase transition tuned by BaTiO3 doping was deduced from the dielectric constant, elastic compliance constant and Raman spectra. The temperature-stable piezoelectric response was attributed to the counter-balance of contributions from the dielectric and elastic responses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا